3,766 research outputs found

    Fuzzy approach to multimedia faulty module replacement

    Get PDF
    For non-real time multimedia systems, we present a fuzzy approach to replacing the faulty module. After analyzing the nature of the random and pseudo-random test sequences applied to a module under test, we obtain the aliasing fault coverage between the random and pseudo-random sequences. The activity probability features of intermittent faults in the module under test are discussed based on the Markov chain model. Results on real examples are presented to demonstrate the effectiveness of the proposed fuzzy replacement approac

    Intra-metropolitan Office Price and Trading Volume Dynamics: Evidence from Hong Kong

    Get PDF
    Previous studies of the office market have tended to focus on either the rental market or the aggregate sales market. This paper focuses on the intra-metropolitan sales market and on office price and trading volume dynamics in Hong Kong. According to our findings, buildings trading at higher prices are not necessarily traded more often than those trading at lower prices. In addition, the price of offices in different categories does not necessarily move in tandem. The trading volumes of higher priced buildings tend to Granger cause the lower priced buildings, and this conclusion is robust to alternative classifications. The paper contrasts several existing theories. Suggestions for future research are also discussed.Commercial property; Correlation

    Re-assess and Modify Manufacturing Curriculum to Meet the requirement of Industry 4.0

    Get PDF
    Short Abstract: Evaluates the potential changes that might significantly impact the knowledge and skill‐set requirements for students that are/will be enroll in the manufacturing engineering program. Full Abstract: The adoption of Industry 4.0 creates the need to reassess and modify the current Manufacturing Engineering program curriculum. The different aspects of Industry 4.0 and their potential impact to the current manufacturing engineering curriculum such as the human‐machine system, data‐driven decision making and cyber‐physical system will be discussed

    Investigation of mid-infrared AlInSb LEDs with an n-i-p structure

    Get PDF
    We report on the investigation on mid-infrared AlInSb LEDs with an n-i-p structure. Compared to the conventional AlInSb LEDs with a p-i-n structure, a better current spreading corresponding to a uniform current distribution in the active region is expected in the n-i-p structure because of a high electron mobility in the n-type AlInSb material. The output optical power of laterally injected LEDs were investigated as a function of the device geometry by COMSOL simulations and confirmed by experimental results

    MuPlex: multi-objective multiplex PCR assay design

    Get PDF
    We have developed a web-enabled system called MuPlex that aids researchers in the design of multiplex PCR assays. Multiplex PCR is a key technology for an endless list of applications, including detecting infectious microorganisms, whole-genome sequencing and closure, forensic analysis and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays is computationally challenging because it involves tradeoffs among competing objectives, and extensive computational analysis is required in order to screen out primer-pair cross interactions. With MuPlex, users specify a set of DNA sequences along with primer selection criteria, interaction parameters and the target multiplexing level. MuPlex designs a set of multiplex PCR assays designed to cover as many of the input sequences as possible. MuPlex provides multiple solution alternatives that reveal tradeoffs among competing objectives. MuPlex is uniquely designed for large-scale multiplex PCR assay design in an automated high-throughput environment, where high coverage of potentially thousands of single nucleotide polymorphisms is required. The server is available at

    Computational tradeoffs in multiplex PCR assay design for SNP genotyping

    Get PDF
    BACKGROUND: Multiplex PCR is a key technology for detecting infectious microorganisms, whole-genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays requires the consideration of multiple competing objectives and physical constraints, and extensive computational analysis must be performed in order to identify the possible formation of primer-dimers that can negatively impact product yield. RESULTS: This paper examines the computational design limits of multiplex PCR in the context of SNP genotyping and examines tradeoffs associated with several key design factors including multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated primers are actually assigned to one of several available tube), and tube-size uniformity. We also examine how design performance depends on the total number of available SNPs from which to choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage designs is subject to a computational phase transition, becoming dramatically more difficult when the probability of primer pair interaction exceeds a critical threshold. The precise location of this critical transition point depends on the number of available SNPs and the level of multiplexing required. We also demonstrate how coverage performance is impacted by the number of available snps, primer selection criteria, and target multiplexing levels. CONCLUSION: The presence of a phase transition suggests limits to scaling Multiplex PCR performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs, or loosening primer selection constraints so as to increase the number of candidate primer pairs per SNP, though the latter may produce other adverse effects. The resulting design performance tradeoffs define a benchmark that can serve as the basis for comparing competing multiplex PCR design optimization algorithms and can also provide general rules-of-thumb to experimentalists seeking to understand the performance limits of standard multiplex PCR

    High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Get PDF
    Alternative splicing is a significant contributor to transcriptome diversity, and a high-throughput experimental method to quantitatively assess predictions from expressed sequence tag and microarray analyses may help to answer questions about the extent and functional significance of these variants. Here, we describe a method for high-throughput analysis of known or suspected alternative splicing variants (ASVs) using PCR, primer extension and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Reverse-transcribed mRNA is PCR amplified with primers surrounding the site of alternative splicing, followed by a primer extension reaction designed to target sequence disparities between two or more variants. These primer extension products are assayed on a MALDI-TOF mass spectrometer and analyzed automatically. This method is high-throughput, highly accurate and reproducible, allowing for the verification of the existence of splicing variants in a variety of samples. An example given also demonstrates how this method can eliminate potential pitfalls from ordinary gel electrophoretic analysis of splicing variants where heteroduplexes formed from different variants can produce erroneous results. The new method can be used to create alternative variant profiles for cancer markers, to study complex splicing regulation, or to screen potential splicing therapies
    corecore