16 research outputs found

    Can ChatGPT-like Generative Models Guarantee Factual Accuracy? On the Mistakes of New Generation Search Engines

    Full text link
    Although large conversational AI models such as OpenAI's ChatGPT have demonstrated great potential, we question whether such models can guarantee factual accuracy. Recently, technology companies such as Microsoft and Google have announced new services which aim to combine search engines with conversational AI. However, we have found numerous mistakes in the public demonstrations that suggest we should not easily trust the factual claims of the AI models. Rather than criticizing specific models or companies, we hope to call on researchers and developers to improve AI models' transparency and factual correctness

    Direct Visualization of Laser-Driven Electron Multiple Scattering and Tunneling Distance in Strong-Field Ionization

    Get PDF
    Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that pass by their parent ion more than once before strongly scattering. The shape of these structures can be associated with the specific number of times the electron is driven past its parent ion in the laser field before scattering. Furthermore, a careful analysis of the cutoff energy of the structures allows us to experimentally measure the distance between the electron and ion at the moment of tunnel ionization. This work provides new physical insight into how atoms ionize in strong laser fields and has implications for further efforts to extract atomic and molecular dynamics from strong-field physics

    Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K

    Get PDF
    Background: The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression. Methodology/Principal Findnigs: Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression. Conclusions/Significance: Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. © 2012 Zhou et al.published_or_final_versio

    Design and development of a university education information sharing system

    No full text
    This report documented the details of the author’s Final Year Project, Design and Development of a University Education Information Sharing System. The application is tailored for pre-university students to help them collect reliable information for well-informed decision making for their university education in Singapore. Meanwhile, the author also built up a forum for the students for interactions, University students can also make use of the system as a reference. This report included the whole life cycle of the application, from the initial phases of literature review and requirement analysis, the selection of methodology and the system design and development process, and testing and deployment, the challenges and space for improvement, to the future enhancements and business opportunities that are available to the application. In order to facilitate a basis for discussion on the applications that are currently offered in the market, an in-depth market research has been made. Meanwhile, there is a detailed elaboration on the system overview, coding about functionalities and testing and deployment. Following the testing, the author has concluded the values of the system and possible enhancement in the future on the purpose of commercialization.Bachelor of Engineerin

    Internal stress transfer characteristics of coal–rock medium under concentrated force based on particle flow method

    No full text
    Abstract To solve the problem that the macroscopic deformation and failure of coal–rock medium under external loads are easy to be observed while the internal stress transfer mode and path are unclear. Based on the discrete element idea, the numerical models for pure coal or rock samples and coal–rock combination samples with different lithologies and combination methods under concentrated force are established by PFC2D software. Then the influence of coal or rock strength and combination methods on the internal stress transfer law and distribution evolution characteristics of coal–rock medium are discussed from the perspectives of macroscopic stress and mesoscopic force chain, respectively. The results showed that under concentrated load, the macroscopic stress transfer paths within pure coal or rock samples and coal–rock combination samples are primarily in the form of ‘point source radiation’. However, when transferring between coal–rock interfaces, there is a certain interface effect. For pure coal or rock samples, differences in lithology does not change the transfer rules and macro distribution patterns of internal stress, but it can cause changes in internal unit transfer stress value and local area transfer direction. For coal–rock combination samples, the greater the difference in lithology between the two sides of the interface, the more likely the interface effect will occur. In addition, the internal stress transfer is also influenced by the relative stratigraphic relationships of coal and rock. When the stress is transferred from a higher-strength rock to a lower-strength coal mass, the interface effect will be more significant. However, regardless of the combination pattern, the locations where significant stress surges occur are always within the higher strength rock mass near the interface. The findings are helpful to understand the mechanical properties and failure mechanism of mining coal and rock mass, and provide a theoretical basis for the study of the mining-induced mechanical behavior of the floor under the action of the coal pillar
    corecore