7 research outputs found

    Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    No full text
    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle

    Pharmacological inhibition of SK-channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events

    No full text
    BACKGROUND: Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca2+ -activated K+ (SK)-channel inhibition in a porcine model for obstructive respiratory events. METHODS: In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. RESULTS: During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. CONCLUSION: In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study

    First Clinical Study with AP30663 - a KCa2 Channel Inhibitor in Development for Conversion of Atrial Fibrillation

    Get PDF
    Pharmacological cardioversion of atrial fibrillation (AF) is frequently inefficacious. AP30663, a small conductance Ca2+ activated K+ (KCa2) channel blocker, prolonged the atrial effective refractory period in preclinical studies and subsequently converted AF into normal sinus rhythm. This first-in-human study evaluated the safety and tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects were explored. Forty-seven healthy male volunteers (23.7 ± 3.0 years) received AP30663 intravenously in ascending doses. Due to infusion site reactions, changes to the formulation and administration were implemented in the latter 24 volunteers. Extractions from a 24-hour continuous electrocardiogram were used to evaluate the PD effect of AP30663. Data were analyzed with a repeated measure analysis of covariance, noncompartmental analysis, and concentration-effect analysis. In total, 33 of 34 adverse events considered related to AP30663 exposure were related to the infusion site, mild in severity, and temporary in nature, although full recovery took up to 110 days. After formulation and administration changes, the local infusion site reaction remained, but the median duration was shorter despite higher dose levels. AP30663 displayed a less than dose proportional increase in peak plasma concentration (Cmax) and a terminal half-life of around 5 hours. In healthy volunteers, no effect of AP30663 was observed on electrocardiographic parameters, other than a concentration-dependent effect on the corrected QT Fridericia’s formula interval (+18.8 ± 4.3 ms for the highest dose level compared with time matched placebo). In conclusion, administration of AP30663, a novel KCa2 channel inhibitor, was safe and well-tolerated systemically in humans, supporting further development in patients with AF undergoing cardioversion

    Role of Small-Conductance Calcium-Activated Potassium Channels in Atrial Electrophysiology and Fibrillation in the Dog

    No full text
    BACKGROUND: Recent evidence points to functional Ca²⁺-dependent K⁺ (SK) channels in the heart that may govern atrial fibrillation (AF) risk, but the underlying mechanisms are unclear. This study addressed the role of SK channels in atrial repolarization and AF persistence in a canine AF model. METHODS AND RESULTS: Electrophysiological variables were assessed in dogs subjected to atrial remodeling by 7-day atrial tachypacing (AT-P), as well as controls. Ionic currents and single-channel properties were measured in isolated canine atrial cardiomyocytes by patch clamp. NS8593, a putative selective SK blocker, suppressed SK current with an IC₅₀ of ≈5 μmol/L, without affecting Na⁺, Ca²⁺, or other K⁺ currents. Whole-cell SK current sensitive to NS8593 was significantly larger in pulmonary vein (PV) versus left atrial (LA) cells, without a difference in SK single-channel open probability (P(o)), whereas AT-P enhanced both whole-cell SK currents and single-channel P(o). SK-current block increased action potential duration in both PV and LA cells after AT-P; but only in PV cells in absence of AT-P. SK2 expression was more abundant at both mRNA and protein levels for PV versus LA in control dogs, in both control and AT-P; AT-P upregulated only SK1 at the protein level. Intravenous administration of NS8593 (5 mg/kg) significantly prolonged atrial refractoriness and reduced AF duration without affecting the Wenckebach cycle length, left ventricular refractoriness, or blood pressure. CONCLUSIONS: SK currents play a role in canine atrial repolarization, are larger in PVs than LA, are enhanced by atrial-tachycardia remodeling, and appear to participate in promoting AF maintenance. These results are relevant to the potential mechanisms underlying the association between SK single-nucleotide polymorphisms and AF and suggest SK blockers as potentially interesting anti-AF drugs
    corecore