1,010 research outputs found

    Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle Spectropolarimetric Imager

    Get PDF
    Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument's bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.NASAJPLCenter for Space Researc

    MISR stereoscopic image matchers: techniques and results

    Get PDF
    The Multi-angle Imaging SpectroRadiometer (MISR) instrument, launched in December 1999 on the NASA EOS Terra satellite, produces images in the red band at 275-m resolution, over a swath width of 360 km, for the nine camera angles 70.5/spl deg/, 60/spl deg/, 45.6/spl deg/, and 26.1/spl deg/ forward, nadir, and 26.1/spl deg/, 45.6/spl deg/, 60/spl deg/, and 70.5/spl deg/ aft. A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission. Accuracy and speed requirements necessitated the use of a combination of area-based and feature-based stereo-matchers with only pixel-level acuity. Feature-based techniques are used for cloud motion retrieval with the off-nadir MISR camera views, and the motion is then used to provide a correction to the disparities used to measure cloud-top heights which are derived from the innermost three cameras. Intercomparison with a previously developed "superstereo" matcher shows that the results are very comparable in accuracy with much greater coverage and at ten times the speed. Intercomparison of feature-based and area-based techniques shows that the feature-based techniques are comparable in accuracy at a factor of eight times the speed. An assessment of the accuracy of the area-based matcher for cloud-free scenes demonstrates the accuracy and completeness of the stereo-matcher. This trade-off has resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate. Examples are shown of the application of the MISR stereo-matchers on several difficult scenes which demonstrate the efficacy of the matching approach

    Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides

    Get PDF
    AbstractPhotoaffinity labeling of photosynthetic reaction centers of Rhodopseudomonas sphaeroides by the herbicide inhibitor, azido[14C]atrazine, occurs principally on the L-subunit. The specificity of labeling is greater at 77 than at 295 K. Kinetic studies of charge recombination in reaction centers indicate competition between azidoatrazine and ubiquinone-1 (Q-1) for binding to the reaction center. This competition occurs through the L-subunit binding site, as increasing concentrations of Q-1 decrease azido[14C]atrazine labeling of this site. It is proposed that the inhibitor binding site, predominantly on the L-subunit, and the secondary quinone binding site on the M-subunit, are adjacent so that there is partial overlap by one molecule of the domain occupied by the other

    Blowing Off Steam: Virus Inhibition of cGAS DNA Sensing

    Get PDF
    Detection of viral DNA is essential for eliciting mammalian innate immunity. However, viruses have acquired effective mechanisms for blocking host defense. Indeed, in this issue of Cell Host & Microbe, Wu et al. (2015) discover a herpesviral strategy for inhibiting the prominent host sensor of viral DNA, cGAS

    Near-threshold high-order harmonic spectroscopy with aligned molecules

    Full text link
    We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure

    Spectroscopic Properties of Reaction Center Pigments in Photosystem II Core Complexes: Revision of the Multimer Model

    Get PDF
    AbstractAbsorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P+Pheo−,P+QA−,3P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His198, the axial ligand of the special-pair chlorophyll PD1, and D1-Thr179, an amino-acid residue nearest to the accessory chlorophyll ChlD1, on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns ChlD1. Compared to isolated reaction centers, the site energy of ChlD1 is red-shifted by 4nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on ChlD1 rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5K the lowest excited state of the reaction center is lower by ∼10nm than the low-energy exciton state of the two special-pair chlorophylls PD1 and PD2 which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for ChlD1 and PD1, reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300K. At physiological temperature, there are considerable contributions from all pigments to the equilibrated excited state P*. The contribution of ChlD1 is twice that of PD1 at ambient temperature, making it likely that the primary charge separation will be initiated by ChlD1 under these conditions. The calculations of absorbance difference spectra provide independent evidence that after primary electron transfer the hole stabilizes at PD1, and that the physiologically dangerous charge recombination triplets, which may form under light stress, equilibrate between ChlD1 and PD1

    Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative

    Get PDF
    Aerosols are involved in a complex set of processes that operate across many spatial and temporal scales. Understanding these processes, and ensuring their accurate representation in models of transport, radiation transfer, and climate, requires knowledge of aerosol physical, chemical, and optical properties and the distributions of these properties in space and time. To derive aerosol climate forcing, aerosol optical and microphysical properties and their spatial and temporal distributions, and aerosol interactions with clouds, need to be understood. Such data are also required in conjunction with size-resolved chemical composition in order to evaluate chemical transport models and to distinguish natural and anthropogenic forcing. Other basic parameters needed for modeling the radiative influences of aerosols are surface reflectivity and three-dimensional cloud fields. This large suite of parameters mandates an integrated observing and modeling system of commensurate scope. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept, designed to meet this requirement, is motivated by the need to understand climate system sensitivity to changes in atmospheric constituents, to reduce climate model uncertainties, and to analyze diverse collections of data pertaining to aerosols. This paper highlights several challenges resulting from the complexity of the problem. Approaches for dealing with them are offered in the set of companion papers

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal
    corecore