9 research outputs found

    Two new mutations in the HIF2A gene associated with erythrocytosis

    No full text
    Congenital or familial erythrocytosis/polycythemia can have many causes, and an emerging cause is genetic disruption of the oxygen-sensing pathway that regulates the ERYTHROPOIETIN (EPO) gene. More specifically, recent studies have identified erythrocytosis-associated mutations in the HIF2A gene, which encodes for Hypoxia Inducible Factor-2α (HIF-2α), as well as in two genes that encode for proteins that regulate it, Prolyl Hydroxylase Domain protein 2 (PHD2) and the von Hippel Lindau tumor suppressor protein (VHL). We report here the identification of two new heterozygous HIF2A missense mutations, M535T and F540L, both associated with erythrocytosis. Met-535 has previously been identified as a residue mutated in other patients with erythrocytosis, although the mutation of this particular residue to Thr has not been reported. In contrast, Phe-540 has not been reported as a residue mutated in erythrocytosis, and we present evidence here that this mutation impairs interaction of HIF-2α with both VHL and PHD2

    Clonal hematopoiesis in sickle cell disease.

    No full text
    BACKGROUNDCurative gene therapies for sickle cell disease (SCD) are currently undergoing clinical evaluation. The occurrence of myeloid malignancies in these trials has prompted safety concerns. Individuals with SCD are predisposed to myeloid malignancies, but the underlying causes remain undefined. Clonal hematopoiesis (CH) is a premalignant condition that also confers significant predisposition to myeloid cancers. While it has been speculated that CH may play a role in SCD-associated cancer predisposition, limited data addressing this issue have been reported.METHODSHere, we leveraged 74,190 whole-genome sequences to robustly study CH in SCD. Somatic mutation calling methods were used to assess CH in all samples and comparisons between individuals with and without SCD were performed.RESULTSWhile we had sufficient power to detect a greater than 2-fold increased rate of CH, we found no detectable variation in rate or clone properties between individuals affected by SCD and controls. The rate of CH in individuals with SCD was unaltered by hydroxyurea use.CONCLUSIONSWe did not observe an increased risk for acquiring detectable CH in SCD, at least as measured by whole-genome sequencing. These results should help guide ongoing efforts and further studies that seek to better define the risk factors underlying myeloid malignancy predisposition in SCD and help ensure that curative therapies can be more safely applied.FUNDINGNew York Stem Cell Foundation and the NIH

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text

    Search for evidence of the type-III seesaw mechanism in multilepton final states in proton-proton collisions at s=13\sqrt{s} = 13 TeV

    No full text
    A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at s=13\sqrt{s} = 13 TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9 inverse femtobarns. Selection criteria based on the number of leptons and the invariant mass of opposite-sign lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism
    corecore