289 research outputs found

    Triumph of the Commons: Sustainable Community Practices on Rapa Nui (Easter Island)

    Get PDF
    The history of Rapa Nui (Easter Island) has long been framed as a parable for how societies can fail catastrophically due to the selfish actions of individuals and a failure to wisely manage common-pool resources. While originating in the interpretations made by 18th-century visitors to the island, 20th-century scholars recast this narrative as a “tragedy of the commons,” assuming that past populations were unsustainable and selfishly overexploited the limited resources on the island. This narrative, however, is now at odds with a range of archaeological, ethnohistoric, and environmental evidence. Here, we argue that while Rapa Nui did experience large-scale deforestation and ecological changes, these must be contextualized given past land-use practices on the island. We provide a synthesis of this evidence, showing that Rapa Nui populations were sustainable and avoided a tragedy of the commons through a variety of community practices. We discuss this evidence in the context of Elinor Ostrom’s “core design principles” for sustainable communities and argue that Rapa Nui provides a model for long-term sustainability

    The Ethnohistory of Freshwater Use on Rapa Nui (Easter Island, Chile)

    Get PDF
    Sources of drinking water on islands often present critical constraints to human habitation. On Rapa Nui (Easter Island, Chile), there is remarkably little surface fresh water due to the nature of the island’s volcanic geology. While several lakes exist in volcanic craters, most rainwater quickly passes into the subsurface and emerges at coastal springs. Nevertheless, the island sustained a relatively large human population for hundreds of years, one that built an impressive array of monumental platforms (ahu) and statues (moai). To understand how Rapanui acquired their scarce fresh water, we review ethnohistoric data from first European arrival (1722) through the mid-twentieth century. Ethnohistoric accounts identify a diversity of freshwater sources and describe various Rapanui freshwater management strategies. Our findings highlight the importance of coastal freshwater seeps and provide much-needed insight into how Rapanui procured this vital and necessary resource

    Population structure drives cultural diversity in finite populations: A hypothesis for localized community patterns on Rapa Nui (Easter Island, Chile)

    Get PDF
    Understanding how and why cultural diversity changes in human populations remains a central topic of debate in cultural evolutionary studies. Due to the effects of drift, small and isolated populations face evolutionary challenges in the retention of richness and diversity of cultural information. Such variation, however, can have significant fitness consequences, particularly when environmental conditions change unpredictably, such that knowledge about past environments may be key to long-term persistence. Factors that can shape the outcomes of drift within a population include the semantics of the traits as well as spatially structured social networks. Here, we use cultural transmission simulations to explore how social network structure and interaction affect the rate of trait retention and extinction. Using Rapa Nui (Easter Island, Chile) as an example, we develop a model-based hypothesis for how the structural constraints of communities living in small, isolated populations had dramatic effects and likely led to preventing the loss of cultural information in both community patterning and technology

    A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island)

    Get PDF
    Rapa Nui (Easter Island, Chile) presents a quintessential case where the tempo of investment in monumentality is central to debates regarding societal collapse, with the common narrative positing that statue platform (ahu) construction ceased sometime around AD 1600 following an ecological, cultural, and demographic catastrophe. This narrative remains especially popular in fields outside archaeology that treat collapse as historical fact and use Rapa Nui as a model for collapse more generally. Resolving the tempo of “collapse” events, however, is often fraught with ambiguity given a lack of formal modeling, uncritical use of radiocarbon estimates, and inattention to information embedded in stratigraphic features. Here, we use a Bayesian model-based approach to examine the tempo of events associated with arguments about collapse on Rapa Nui. We integrate radiocarbon dates, relative architectural stratigraphy, and ethnohistoric accounts to quantify the onset, rate, and end of monument construction as a means of testing the collapse hypothesis. We demonstrate that ahu construction began soon after colonization and increased rapidly, sometime between the early-14th and mid-15th centuries AD, with a steady rate of construction events that continued beyond European contact in 1722. Our results demonstrate a lack of evidence for a pre-contact ‘collapse’ and instead offer strong support for a new emerging model of resilient communities that continued their long-term traditions despite the impacts of European arrival. Meth- odologically, our model-based approach to testing hypotheses regarding the chronology of collapse can be extended to other case studies around the world where similar debates remain difficult to resolve

    Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island).

    Get PDF
    Examining how past human populations responded to environmental and climatic changes is a central focus of the historical sciences. The use of summed probability distributions (SPD) of radiocarbon dates as a proxy for estimating relative population sizes provides a widely applicable method in this research area. Paleodemographic reconstructions and modeling with SPDs, however, are stymied by a lack of accepted methods for model fitting, tools for assessing the demographic impact of environmental or climatic variables, and a means for formal multi-model comparison. These deficiencies severely limit our ability to reliably resolve crucial questions of past human-environment interactions. We propose a solution using Approximate Bayesian Computation (ABC) to fit complex demographic models to observed SPDs. Using a case study from Rapa Nui (Easter Island), a location that has long been the focus of debate regarding the impact of environmental and climatic changes on its human population, we find that past populations were resilient to environmental and climatic challenges. Our findings support a growing body of evidence showing stable and sustainable communities on the island. The ABC framework offers a novel approach for exploring regions and time periods where questions of climate-induced demographic and cultural change remain unresolved

    Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources

    Get PDF
    Explaining the processes underlying the emergence of monument construction is a major theme in contemporary anthropological archaeology, and recent studies have employed spatially-explicit modeling to explain these patterns. Rapa Nui (Easter Island, Chile) is famous for its elaborate ritual architecture, particularly numerous monumental platforms (ahu) and statuary (moai). To date, however, we lack explicit modeling to explain spatial and temporal aspects of monument construction. Here, we use spatially-explicit point-process modeling to explore the potential relations between ahu construction locations and subsis- tence resources, namely, rock mulch agricultural gardens, marine resources, and freshwa- ter sources—the three most critical resources on Rapa Nui. Through these analyses, we demonstrate the central importance of coastal freshwater seeps for precontact populations. Our results suggest that ahu locations are most parsimoniously explained by distance from freshwater sources, in particular coastal seeps, with important implications for community formation and inter-community competition in precontact times

    Terminal spreading depolarization and electrical silence in death of human cerebral cortex

    Get PDF
    Objective: Restoring the circulation is the primary goal in emergency treatment of cerebral ischemia. However, better understanding of how the brain responds to energy depletion could help predict the time available for resuscitation until irreversible damage and advance development of interventions that prolong this span. Experimentally, injury to central neurons begins only with anoxic depolarization. This potentially reversible, spreading wave typically starts 2 to 5 minutes after the onset of severe ischemia, marking the onset of a toxic intraneuronal change that eventually results in irreversible injury. Methods: To investigate this in the human brain, we performed recordings with either subdural electrode strips (n = 4) or intraparenchymal electrode arrays (n = 5) in patients with devastating brain injury that resulted in activation of a Do Not Resuscitate–Comfort Care order followed by terminal extubation. Results: Withdrawal of life‐sustaining therapies produced a decline in brain tissue partial pressure of oxygen (ptiO2) and circulatory arrest. Silencing of spontaneous electrical activity developed simultaneously across regional electrode arrays in 8 patients. This silencing, termed “nonspreading depression,” developed during the steep falling phase of ptiO2 (intraparenchymal sensor, n = 6) at 11 (interquartile range [IQR] = 7–14) mmHg. Terminal spreading depolarizations started to propagate between electrodes 3.9 (IQR = 2.6–6.3) minutes after onset of the final drop in perfusion and 13 to 266 seconds after nonspreading depression. In 1 patient, terminal spreading depolarization induced the initial electrocerebral silence in a spreading depression pattern; circulatory arrest developed thereafter. Interpretation: These results provide fundamental insight into the neurobiology of dying and have important implications for survivable cerebral ischemic insults. Ann Neurol 2018;83:295–31
    corecore