46 research outputs found

    Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect?

    Get PDF
    A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500-650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe-Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe-Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C

    Core - shell particle reinforcements - a new trend in the design and development of metal matrix composites

    Get PDF
    Metal matrix composites (MMCs) are a constantly developing class of materials. Simultaneously achieving a high strength and a high ductility is a challenging task in the design of MMCs. This article aims to highlight a recent trend: the development of MMCs reinforced with particles of core–shell structure. The core–shell particles can be synthesized in situ upon a partial transformation of metal (alloy) particles introduced into a metal matrix. MMCs containing core–shell particles with cores of different compositions (metallic, intermetallic, glassy alloy, high-entropy alloy, metal-ceramic) are currently studied. For metal core–intermetallic shell particle-reinforced composites, the property gain by the core–shell approach is strengthening achieved without a loss in ductility. The propagation of cracks formed in the brittle intermetallic shell is hindered by both the metal matrix and the metal core, which constitutes a key advantage of the metal core–intermetallic shell particles over monolithic particles of intermetallic compounds for reinforcing purposes. The challenges of making a direct comparison between the core–shell particle-reinforced MMCs and MMCs of other microstructures and future research directions are discussed

    The benefit of the glassy state of reinforcing particles for the densification of aluminum matrix composites

    Get PDF
    In metallic glass-reinforced metal matrix composites, the glassy phase can serve a dual purpose: (i) it can behave as soft binder and porosity remover during consolidation; and (ii) it can act as the hard reinforcing phase after densification. The present work aimed to demonstrate the benefit of the glassy reinforcing particles for the densification of aluminum matrix composites. The consolidation behavior of Al–50 vol.% Fe-based alloy mixtures prepared using a glassy Fe66Cr10Nb5B19 alloy powder (Tg = 521 °C, Tx = 573 °C) or a crystalline Fe62Cr10Nb12B16 alloy powder was studied under spark plasma sintering (SPS) and hot pressing (HP) conditions. The powders were consolidated by heating above the glass transition temperature of the glassy alloy (up to 540 °C in SPS and 570 °C in HP). When the coarse aluminum powder was used, the reinforcing particles formed chains within the microstructure. In composites formed from the fine Al powder, the particles of the Fe-based alloy were separated from each other by the metallic matrix, and the tendency to form agglomerates was reduced. The glassy state of the alloy was shown to be beneficial for densification, as the metallic glass acted as a soft binder. The densification enhancement effect was more pronounced in the case of reinforcing particles forming chains. The hardness of the Al–50 vol.% glassy Fe66Cr10Nb5B19 composites obtained by SPS was twice the hardness of the unreinforced sintered aluminum (110 HV1 versus 45 HV1)

    Formation of TiC-Cu nanocomposites by a reaction between Ti25Cu75 melt-spun alloy and carbon

    Get PDF
    In this work, Ti25Cu75 melt-spun partially amorphous alloy was used as a source of Ti and Cu to synthesize in-situ TiC-Cu nanocomposites. The reaction between the alloy and carbon started during ball milling and continued during Spark Plasma Sintering. At the same time, during ball milling, the alloy experienced phase transformations: crystallization of the amorphous phase was followed by decomposition of TiCu3. Copper crystallites formed during the alloy transformations were the reason for the presence of copper regions 0.5–1 µm in size free from TiC nanoparticles in the sintered composites. The Ti-Cu intermetallics transformed into non-agglomerated TiC 10–20 nm in size distributed in the copper matrix. The hardness of the synthesized TiC-Cu nanocomposites exceeded that of composites obtained by conventional sintering of ball-milled Ti-C-Cu powders

    Metallic iron or a Fe-based glassy alloy to reinforce aluminum: reactions at the interface during spark plasma sintering and mechanical properties of the composites

    Get PDF
    The microstructural features and mechanical properties of composites formed by spark plasma sintering (SPS) of Al + 20 vol.% Fe and Al + 20 vol.% Fe66Cr10Nb5B19 (glassy alloy) mixtures composed of micrometer-sized particles are presented. The interaction between the mixture components was studied by differential thermal analysis and through examining the microstructure of composites sintered at two different SPS pressures. When the pressure was increased from 40 MPa to 80 MPa, the thickness of the reaction products formed between the iron particles and aluminum increased due to a more intimate contact between the phases established at a higher pressure. When the metallic glass was substituted for iron, the pressure increase had an opposite effect. It was concluded that local overheating at the interface in the case of Al + 20 vol.% Fe66Cr10Nb5B19 composites governed the formation of the product layers at 40 MPa. The influence of the nature of reinforcement on the mechanical properties of the composites was analyzed, for which sintered materials with similar microstructural features were compared. In composites without the reaction products and composites with thin layers of the products, the hardness increased by 13–38% relative to the unreinforced sintered aluminum, the glassy alloy and iron inclusions producing similar outcomes. The effect of the nature of added particles on the hardness and compressive strength of composites was seen when the microstructure of the material was such that an efficient load transfer mechanism was operative. This was possible upon the formation of thick layers of reaction products. Upon compression, the strong glassy cores experienced fracture, the composite with the glassy component showing a higher strength than the composite containing core-shell structures with metallic iron cores

    Microstructure and mechanical properties of composites obtained by spark plasma sintering of Al–Fe66Cr10Nb5B19 metallic glass powder mixtures

    Get PDF
    At present, metallic glasses are evaluated as alternative reinforcements for aluminum matrix composites. These composites are produced by powder metallurgy via consolidation of metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy state of the reinforcement during consolidation. However, it is also of interest to track the structure evolution of these composites when partial interaction between the matrix and the metallic glass is allowed during sintering of the mixtures. The present work was aimed to study the microstructure and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.% Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 °C. The microstructure and mechanical properties of composites obtained by SPS and SPS followed by forging, composites with layers of interfacial reaction products of different thicknesses, and metallic glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the microstructural features of the composites on their strength

    The absence of plasma in “spark plasma sintering”

    Full text link
    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions

    Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering

    Get PDF
    In the area of metal matrix composites, novel reinforcing options are currently being evaluated. Particles of amorphous alloys present an interesting possibility to reinforce soft metals. In the present work, the interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering (SPS) was studied for the first time. In order to trace the phase and microstructural changes upon sintering, mixtures containing 20 vol% and 50 vol% of metallic glass were subjected to SPS at 500–570 °C. After SPS at 500 °C, no reaction layer between the metallic glass particles and aluminum was observed. After SPS at 570 °C, a reaction layer containing Fe2Al5 and FeAl3 formed around the Fe-based cores. The Vickers hardness of composites obtained from mixtures containing 20 vol% Fe66Cr10Nb5B19 at 540 °C was 75 HV and increased to 280 HV after sintering at 570 °C due to the formation of thicker reaction layers at the interface. The hardness of the composite sintered from the mixture containing 20 vol% Fe66Cr10Nb5B19 at 570 °C was between the values predicted by Reuss and Voigt models. Comparison of results of SPS of the powder mixtures with those of SPS of a pre-compacted pellet and electric current-free annealing suggests that local heating at the interface caused by interfacial resistance may be an important factor influencing the reaction advancement at the interface and the formation of Al-containing intermetallic

    Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    Get PDF
    We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification

    Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin

    No full text
    High-energy ball milling (HEBM) of powders is a complex process involving mixing, morphology changes, generation and evolution of defects of the crystalline lattice, and formation of new phases. This review is dedicated to the memory of our colleague, Prof. Michail A. Korchagin (1946–2021), and aims to highlight his works on the synthesis of materials by self-propagating high-temperature synthesis (SHS) and thermal explosion (TE) in HEBM mixtures as important contributions to the development of powder technology. We review results obtained by our group, including those obtained in collaboration with other researchers. We show the applicability of the HEBM mixtures for the synthesis of powder products and the fabrication of bulk materials and coatings. HEBM influences the parameters of synthesis as well as the structure, phase composition, phase distribution (in composites), and grain size of the products. The microstructural features of the products of synthesis conducted using the HEBM precursors are dramatically different from those of the products formed from non-milled mixtures. HEBM powders are also suitable as feedstock materials for depositing coatings by thermal spraying. The emerging applications of HEBM powders and future research directions in this area are discussed
    corecore