6 research outputs found

    Medical prospects of cryptosporidiosis in vivo control using biofabricated nanoparticles loaded with Cinnamomum camphora extracts by Ulva fasciata

    Get PDF
    Background and Aim: Global efforts are continuing to develop preparations against cryptosporidiosis. This study aimed to investigate the efficacy of biosynthesized Ulva fasciata loading Cinnamomum camphora oil extract on new zinc oxide nanoparticles (ZnONPs shorten to ZnNPs) and silver nanoparticles (AgNPs) as alternative treatments for Cryptosporidium parvum experimental infection in rats. Materials and Methods: Oil extract was characterized by gas chromatography-mass spectrometry, loaded by U. fasciata on ionic-based ZnO and NPs, and then characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Biosafety and toxicity were investigated by skin tests. A total of 105 C. parvum oocysts/rat were used (n = 81, 2–3 W, 80–120 g, 9 male rats/group). Oocysts shedding was counted for 21 d. Doses of each preparation in addition to reference drug were administered daily for 7 d, starting on post-infection (PI) day (3). Nitazoxanide (100 mg) was used as the reference drug. After 3 weeks, the rats were sacrificed for postmortem examination and histopathological examination. Two blood samples/rat/group were collected on the 21st day. Ethylenediaminetetraacetic acid blood samples were also used for analysis of biochemistry, hematology, immunology, micronucleus prevalence, and chromosomal abnormalities. Results: C. camphora leaves yielded 28.5 ± 0.3 g/kg oil and 20 phycocompounds were identified. Spherical and rod-shaped particles were detected at 10.47–30.98 nm and 18.83–38.39 nm, respectively. ZnNPs showed the earliest anti-cryptosporidiosis effect during 7–17 d PI. Other hematological, biochemical, immunological, histological, and genotoxicity parameters were significantly fruitful; hence, normalized pathological changes induced by infestation were observed in the NPs treatments groups against the infestation-free and Nitazoxanide treated group. Conclusion: C. camphora, U. fasciata, ZnNPs, and AgNPs have refluxed the pathological effects of infection as well as positively improved host physiological condition by its anticryptosporidial immunostimulant regenerative effects with sufficient ecofriendly properties to be proposed as an alternative to traditional drugs, especially in individuals with medical reactions against chemical commercial drugs

    A Novel Designed Sandwich ELISA for the Detection of <i>Echinococcus granulosus</i> Antigen in Camels for Diagnosis of Cystic Echinococcosis

    No full text
    Echinococcus spp. are important cosmopolitan zoonotic parasitic tapeworms that cause a disease called hydatidosis or cystic echinococcosis (CE), which has remarkable economic losses. The objective of our study was to develop a specific IgG polyclonal antigen-based ELISA (Sandwich ELISA; capture ELISA) method for the detection of circulating Echinococcus granulosus (E. granulosus) antigens in camels infected with hydatid cysts before slaughtering and its application in serodiagnosis of CE in animals to assess the positive rate of hydatidosis in camels slaughtered in Giza governorate abattoirs in Egypt. In this study, molecular identification of Echinococcus sp. isolate was performed based on the NADH dehydrogenase subunit 1 (NAD1) gene, revealing the isolate (GenBank: OQ443068.1), which is identical to the G6 E. granulosus sensu lato genotype. The positive rate of hydatid cysts was determined in slaughtered camels’ organs (n = 587). The results revealed that hydatid cysts were found in 46.5% (273/587) of the examined camels. Pulmonary echinococcosis was significantly more prevalent in the slaughtered camels (60%, 164/273) than hepatic echinococcosis (39.9%, 109/273), (p = 0.001, Chi Square = 11.081). Cyst fertility rates were higher in hepatic (90.8%, 99/109) than in pulmonary cysts (83.5%, 137/164) and the most viable protoscoleces were recorded from fertile the hepatic cysts (67.85 ± 12.78). In this study, hydatid cyst germinal layer antigen (GlAg) was isolated and used for the immunization of rabbits to raise IgG polyclonal antibodies (anti-Echinococcus GlAb IgG). These IgG polyclonal antibodies were purified by affinity chromatography using a protein A column, then labeled with horseradish peroxidase. Electrophoretic analysis of IgG polyclonal antibodies and crude GlAg was performed in 10% polyacrylamide gels. The SDS-PAGE revealed four bands at molecular weights of 77 kDa, 65 kDa, 55 kDa, and 25 kDa. The Sandwich ELISA was performed to evaluate the sensitivity and specificity and cross-reactivity of the prepared IgG polyclonal antibodies. The circulating hydatid antigen was found in 270 out of the 273 samples with hydatidosis, with a sensitivity of 98.9% (270/273), a specificity of 94.9% (296/312) and a diagnostic efficacy of 96.8%. Regarding the cross reactivity, anti-Echinococcus GlAb IgG showed a low cross-reactivity with Fasciola gigantica infected camel sera (3/8), and Myiasis (Cephalopina titillator larvae; 3/20). No cross-reactivity was recorded with uninfected camel sera (negative sera for E. granulosus), and no cross-reactivity was found with antigens of Eimeria spp., Toxoplasma gondii, Cryptosporidium sp., and Hyalomma dromedarii (ticks’ infestation). Then, Sandwich ELISA was conducted again to detect E. granulosus antigen in all the collected camel sera, which resulted in a 48.7% (286/587) positive rate of CE compared to 46.5% (273/587) using a postmortem inspection (PM diagnosis) (p = 0.5, Chi Square = 0.302). In conclusion, the Sandwich ELISA technique introduced in this study appears to be a sufficiently sensitive diagnostic assay for the detection of camels’ echinococcosis using anti-Echinococcus GlAb IgG. In addition, it might offer a significant medical and veterinary importance in helping the early detection of hydatidosis, as well as its early treatment

    A Cryptosporidium parvum vaccine candidate effect on immunohistochemical profiling of CD4+, CD8+, Caspase-3 and NF-κB in mice

    No full text
    Abstract Background Cryptosporidium parvum is a protozoan parasite of medical and veterinary importance that causes neonatal diarrhea in many vertebrate hosts. In this study, we evaluated the efficacy of an affinity-purified antigen as a C. parvum vaccine candidate using ileal and liver tissues of experimentally infected neonatal mice by immunohistochemical profiling and immune scoring of CD4+, CD8+, Caspase-3, and nuclear factor kappa B (NF-κB). This vaccine was prepared from the C. parvum oocysts antigen using immune affinity chromatography with cyanogen bromide-activated Sepharose-4B beads. Methods Thirty neonatal mice were divided into three groups (10 mice/group): (1) non-immunized non-infected, (2) non-immunized infected (using gastric tubes with a single dose of 1 × 105 of C. parvum oocysts in 250 µl PBS solution 1 h before a meal) and (3) immunized (twice with 40 µg/kg of purified C. parvum antigen at 2-week intervals and then infected with 1 × 105 C. parvum oocysts simultaneously with the second group). After euthanizing the animals on the 10th day, post-infection, their ileal and liver tissues were collected and prepared for immunohistochemistry (IHC) staining to detect CD4+, CD8+, Caspase-3, and NF-κB levels, which are indicators for T helper cells, cytotoxic T cells, apoptosis, and inflammation, respectively. Results The IHC results showed that CD4+, CD8+, Caspase-3, and NF-κB expression varied significantly (P < 0.001) in both organs in all the groups. We also recorded high CD4+ levels and low CD8+ expression in the non-immunized non-infected mice tissues, while the opposite was observed in the non-immunized infected mice tissues. In the immunized infected mice, the CD4+ level was higher than CD8 + in both organs. While the Caspase-3 levels were higher in the ileal tissue of non-immunized infected than immunized infected mice ileal tissues, the reverse was seen in the liver tissues of both groups. Furthermore, NF-κB expression was higher in the liver tissues of non-immunized infected mice than in immunized infected mice tissues. Therefore, the IHC results and immune-scoring program revealed a significant difference (P < 0.001) in the CD4+, CD8+, Caspase-3, and NF-κB expression levels in both ileal and liver tissues of all mice groups, which might be necessary for immunomodulation in these tissues. Conclusions The improvement observed in the immunized infected mice suggests that this vaccine candidate might protect against cryptosporidiosis

    Variabilities of hydatidosis in domestic animals slaughtered at Cairo and Giza abattoirs, Egypt

    Get PDF
    Aim: The effect of some variables on hydatidosis in animals slaughtered at Cairo and Giza abattoirs was investigated and the influence on serum biochemical parameters, antioxidant enzymes, and histopathological lesions caused by these parasites as a consequence was estimated. Materials and Methods: The effect of some variables on hydatidosis in 397 sheep, 401 cattle, 435 buffaloes, and 341 camels slaughtered at Cairo and Giza abattoirs was investigated, and the influence on serum biochemical parameters, antioxidant activity and histopathological lesions caused by these parasites as a consequence was estimated. Results: The results revealed that 39 sheep (9.8%), 74 cattle (18.4%), 95 buffaloes (21.8%), and 79 camels (23.25%) were infected. Concerning age variations, 165 young and 232 adult sheep, 215 young and 186 adult cattle, 194 young and 241 adult buffaloes, and 112 young and 229 adult camels were examined. The prevalence of hydatidosis was higher in adult sheep, cattle, and camel; 32 (13.8%), 49 (26.3%), and 56 (24.5%) than the younger ones 7 (4.2%), 25 (11.6%), and 23 (20.5%), respectively. Two hundred and eighty-eight sheep, 171 cattle were examined during winter. However, 109 sheep, 230 cattle were examined during summer. Hydatidosis infection in sheep and cattle was higher in winter 26 (9.01%) and 47 (27.5%) than in summer 13 (11.9%) and 27 (11.7%), respectively. Out of 133 sheep and 128 camels slaughtered in El-Basatin abattoirs, 36 (15.3) and 38 (29.7%) showed higher prevalence than that from El-Warak and El-Moneib abattoirs. Comparing with the non-infected groups, alkaline phosphatase activity decreased in hydatid-infected animals, while cholesterol and liver enzymes activities increased. Total lipid and triglyceride levels decreased in infected camels. Glutathione peroxidase, superoxide dismutase, and catalase decreased in hydatid-infected animals. Conclusion: The disturbance in the biochemical parameters, liver enzymes, and the antioxidant activities was consistent with the pathological findings that indicated the risk of hydatidosis infection. Finally, this study clarified the variabilities of hydatidosis in Cairo and Giza abattoirs as a starting point for future studies in different regions in Egypt

    Comparative ovicidal activity of Moringa oleifera leaf extracts on Fasciola gigantica eggs

    No full text
    Background: Fasciolosis is an important zoonotic disease affecting the productive performance of farm animals in Egypt. Aim: The aim of the present study was comparing the ovicidal effect of different extracts as an alcoholic (Methanolic and Ethanolic) and aqueous Moringa oleifera leaf extracts on Fasciola gigantica non-embryonated and developed eggs. Materials and Methods: Tested concentrations of extracts ranged from 12.5 to 800 mg/ml. Nitroxynil was used as reference drug with a dose of 100 mg/ml. Results: M. oleifera alcoholic and aqueous extracts showed a concentration-dependent ovicidal effect on F. gigantica non-embryonated and developed eggs. Based on LC50 values, water extract showed the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on non-embryonated eggs. Non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, the developed eggs were more susceptible to ethanolic extract than non-embryonated eggs even the lowest LC50 (12.38 mg/ml). Conclusion: M. oleifera leaf extracts especially aqueous extract could be a promising step in the field of controlling fascioliasis. Further, in vivo studies are needed to enlighten the therapeutic potential of M. oleifera extracts in treating F. gigantica infection

    Molecular characterization of some equine vector-borne diseases and associated arthropods in Egypt

    No full text
    International audienceEquine vector-borne diseases (EVBDs) are emerging and re-emerging diseases, and most of them are zoonotic. This study aimed to investigate EVBDs in equines and associated arthropods (ticks and flies) from Egypt using molecular analyses, in addition to a preliminary characterization of associated ticks and flies by the matrixassisted laser desorption/ionization time of flight (MALDI-TOF) and molecular techniques. In this study, 335 blood samples were obtained from equines that appeared to be in good health (320 horses and 15 donkeys) in Cairo and Beni Suef provinces, Egypt. From the same animals, 166 arthropods (105 sucking flies and 61 ticks) were collected. Ticks and flies were preliminary characterized by the MALDI-TOF and molecular tools. Quantitative PCR (qPCR) and standard PCR coupled with sequencing were performed on the DNA of equines, ticks, and flies to screen multiple pathogens. The MALDI-TOF and molecular characterization of arthropods revealed that louse fly (Hippobosca equina) and cattle tick (Rhipicephalus annulatus) infesting equines. Anaplasma platys-like (1.6%), Anaplasma marginale (1.6%), Candidatus Ehrlichia rustica (6.6%), a new Ehrlichia sp. (4.9%), and Borrelia theileri (3.3%) were identified in R. annulatus. Anaplasma sp. and Borrelia sp. DNAs were only detected in H. equina by qPCR. A. marginale, Anaplasma ovis, and Theileria ovis recorded the same low infection rate (0.6%) in donkeys, while horses were found to be infected with Theileria equi and a new Theileria sp. Africa with recorded prevalence rates of 1.2% and 2.7%, respectively. In conclusion, different pathogens were first detected such as A. platys-like, Candidatus E. rustica, and a new Ehrlichia sp. in R. annulatus; A. marginale, A. ovis, and T. ovis in donkeys; and a new Theileria sp. "Africa" in horses
    corecore