33 research outputs found

    Little String Theory at a TeV

    Get PDF
    We propose a framework where the string scale as well as all compact dimensions are at the electroweak scale \sim TeV1^{-1}. The weakness of gravity is attributed to the small value of the string coupling gs1016g_s \sim 10^{-16}, presumably a remnant of the dilaton's runaway behavior, suggesting the possibility of a common solution to the hierarchy and dilaton-runaway problems. In spite of the small gsg_s, in type II string theories with gauge interactions localized in the vicinity of NS5-branes, the standard model gauge couplings are of order one and are associated with the sizes of compact dimensions. At a TeV these theories exhibit higher dimensional and stringy behavior. The models are holographically dual to a higher dimensional non-critical string theory and this can be used to compute the experimentally accessible spectrum and self-couplings of the little strings. In spite of the stringy behavior, gravity remains weak and can be ignored at collider energies. The Damour-Polyakov mechanism is an automatic consequence of our scenario and may lead to small violations of the equivalence principle, potentially observable in satellite experiments

    Experimental signatures of low energy gauge mediated supersymmetry breaking

    Get PDF
    The experimental signatures for gauge mediated supersymmetry breaking are presented. The phenomenology associated with this class of models is distinctive since the gravitino is naturally the LSP. The next lightest supersymmetric particle (NLSP) can be a gaugino, Higgsino, or right handed slepton. Decay of the NLSP to its partner plus the LSP proceeds through the Goldstino component of the gravitino. For a significant range of parameters this decay can take place within the detector, and can be measured as a displaced vertex or kink in a charged particle track. In the case that the NLSP is mostly gaugino, we identify the discovery modes as e^+e^- \rightarrow \gamma \gamma + \Emiss, and p \bar{p} \rightarrow l^+ l^- \gamma \gamma + \EmissT. If the NLSP is a right handed slepton the discovery modes are e^+ e^- \rightarrow l^+ l^- + \Emiss and p \bar{p} \rightarrow l^+ l^- + \EmissT. An NLSP which is mostly Higgsino is also considered. Finally, these theories can contain scalar particles which mediate sub-millimeter range coherent forces of gravitational strength

    Phenomenology, Astrophysics and Cosmology of Theories with Sub-Millimeter Dimensions and TeV Scale Quantum Gravity

    Get PDF
    We recently proposed a solution to the hierarchy problem not relying on low-energy supersymmetry or technicolor. Instead, the problem is nullified by bringing quantum gravity down to the TeV scale. This is accomplished by the presence of n2n \geq 2 new dimensions of sub-millimeter size, with the SM fields localised on a 3-brane in the higher dimensional space. In this paper we systematically study the experimental viability of this scenario. Constraints arise both from strong quantum gravitational effects at the TeV scale, and more importantly from the production of massless higher dimensional gravitons with TeV suppressed couplings. Theories with n>2n>2 are safe due mainly to the infrared softness of higher dimensional gravity. For n=2n=2, the six dimensional Planck scale must be pushed above 30\sim 30 TeV to avoid cooling SN1987A and distortions of the diffuse photon background. Nevertheless, the particular implementation of our framework within type I string theory can evade all constraints, for any n2n \geq 2, with string scale ms1m_s \sim 1 TeV. We also explore novel phenomena resulting from the existence of new states propagating in the higher dimensional space. The Peccei-Quinn solution to the strong CP problem is revived with a weak scale axion in the bulk. Gauge fields in the bulk can mediate repulsive forces 106108\sim 10^6 - 10^8 times stronger than gravity at sub-mm distances, and may help stabilize the proton. Higher-dimensional gravitons produced on our brane and captured on a different "fat" brane can provide a natural dark matter candidate.Comment: 51 pages, late

    Supersymmetric Unification Without Low Energy Supersymmetry And Signatures for Fine-Tuning at the LHC

    Full text link
    The cosmological constant problem is a failure of naturalness and suggests that a fine-tuning mechanism is at work, which may also address the hierarchy problem. An example -- supported by Weinberg's successful prediction of the cosmological constant -- is the potentially vast landscape of vacua in string theory, where the existence of galaxies and atoms is promoted to a vacuum selection criterion. Then, low energy SUSY becomes unnecessary, and supersymmetry -- if present in the fundamental theory -- can be broken near the unification scale. All the scalars of the supersymmetric standard model become ultraheavy, except for a single finely tuned Higgs. Yet, the fermions of the supersymmetric standard model can remain light, protected by chiral symmetry, and account for the successful unification of gauge couplings. This framework removes all the difficulties of the SSM: the absence of a light Higgs and sparticles, dimension five proton decay, SUSY flavor and CP problems, and the cosmological gravitino and moduli problems. High-scale SUSY breaking raises the mass of the light Higgs to about 120-150 GeV. The gluino is strikingly long lived, and a measurement of its lifetime can determine the ultraheavy scalar mass scale. Measuring the four Yukawa couplings of the Higgs to the gauginos and higgsinos precisely tests for high-scale SUSY. These ideas, if confirmed, will demonstrate that supersymmetry is present but irrelevant for the hierarchy problem -- just as it has been irrelevant for the cosmological constant problem -- strongly suggesting the existence of a fine-tuning mechanism in nature.Comment: Typos and equations fixed, references adde

    Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

    Full text link
    MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world's best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure
    corecore