4,309 research outputs found

    K* vector and tensor couplings from Nf = 2 tmQCD

    Get PDF
    The mass m_K* and vector coupling f_K* of the K*-meson, as well as the ratio of the tensor to vector couplings fT/fV|_K*, are computed in lattice QCD. Our simulations are performed in a partially quenched setup, with two dynamical (sea) Wilson quark flavours, having a maximally twisted mass term. Valence quarks are either of the standard or the Osterwalder-Seiler maximally twisted variety. Results obtained at three values of the lattice spacing are extrapolated to the continuum, giving m_K* = 981(33) MeV, f_K* = 240(18) MeV and fT(2 GeV)/fV|_K* = 0.704(41).Comment: 1+11 page

    Multi--Layer Structure in the Strongly Coupled 5D Abelian Higgs Model

    Get PDF
    We explore the phase diagram of the five-dimensional anisotropic Abelian Higgs model by Monte Carlo simulations. In particular, we study the transition between the confining phase and the four dimensional layered Higgs phase. We find that, in a certain region of the lattice parameter space, this transition can be first order and that each layer moves into the Higgs phase independently of the others (decoupling of layers). As the Higgs couplings vary, we find, using mean field techniques, that this transition may probably become second order.Comment: 16 page

    O(a^2) cutoff effects in lattice Wilson fermion simulations

    Get PDF
    In this paper we propose to interpret the large discretization artifacts affecting the neutral pion mass in maximally twisted lattice QCD simulations as O(a^2) effects whose magnitude is roughly proportional to the modulus square of the (continuum) matrix element of the pseudoscalar density operator between vacuum and one-pion state. The numerical size of this quantity is determined by the dynamical mechanism of spontaneous chiral symmetry breaking and turns out to be substantially larger than its natural magnitude set by the value of Lambda_QCD.Comment: 38 pages, 1 figure, 2 table

    The Abelian Higgs Model in Three Dimensions with Improved Action

    Get PDF
    We study the Abelian Higgs Model using an improved form of the action in the scalar sector. The subleading corrections are carefully analysed and the connection between lattice and continuous parameters is worked out. The simulation shows a remarkable improvement of the numerical performance.Comment: Minor correction to one-loop relations;reference adde

    Three-dimensional lattice U(1) gauge-Higgs model at low mHm_H

    Get PDF
    We study the non-compact version of the U(1) gauge-Higgs model in three dimensions for mH=30GeV.m_H = 30 GeV. We found that, using this formulation, rather modest lattices approach quite well the infinite volume behaviour.The phase transition is first order, as expected for this Higgs mass. The latent heat (in units of Tcr4T_{cr}^4) is compatible with the predictions of the two-loop effective potential; it is an order of magnitude less than the corresponding SU(2) value. The transition temperature and in units of the critical temperature are also compatible with the perturbative results.Comment: 15 pages, latex, 9 figures, changes in the comparison with perturbation theor

    Implications of Low Energy Supersymmetry Breaking at the Tevatron

    Get PDF
    The signatures for low energy supersymmetry breaking at the Tevatron are investigated. It is natural that the lightest standard model superpartner is an electroweak neutralino, which decays to an essentially massless Goldstino and photon, possibly within the detector. In the simplest models of gauge-mediated supersymmetry breaking, the production of right-handed sleptons, neutralinos, and charginos leads to a pair of hard photons accompanied by leptons and/or jets with missing transverse energy. The relatively hard leptons and softer photons of the single e^+e^- \gamma \gamma + \EmissT event observed by CDF implies this event is best interpreted as arising from left-handed slepton pair production. In this case the rates for l^{\pm} \gamma \gamma + \EmissT and \gamma \gamma + \EmissT are comparable to that for l^+l^- \gamma \gamma + \EmissT.Comment: 18 pages, Latex, tables correcte

    Layered Higgs Phase as a Possible Field Localisation on a Brane

    Full text link
    So far it has been found by using lattice techniques that in the anisotropic five--dimensional Abelian Higgs model, a layered Higgs phase exists in addition to the expected five--dimensional one. The exploration of the phase diagram has shown that the two Higgs phases are separated by a phase transition from the confining phase. This transition is known to be first order. In this paper we explore the possibility of finding a second order transition point in the critical line which separates the first order phase transition from the crossover region. This is shown to be the case only for the four--dimensional Higgs layered phase whilst the phase transition to the five--dimensional broken phase remains first order. The layered phase serves as the possible realisation of four--dimensional spacetime dynamics which is embedded in a five--dimensional spacetime. These results are due to gauge and scalar field localisation by confining interactions along the extra fifth direction.Comment: 1+15 pages, 12 figure

    Phase Structure of the 5D Abelian Higgs Model with Anisotropic Couplings

    Get PDF
    We establish the phase diagram of the five-dimensional anisotropic Abelian Higgs model by mean field techniques and Monte Carlo simulations. The anisotropy is encoded in the gauge couplings as well as in the Higgs couplings. In addition to the usual bulk phases (confining, Coulomb and Higgs) we find four-dimensional ``layered'' phases (3-branes) at weak gauge coupling, where the layers may be in either the Coulomb or the Higgs phase, while the transverse directions are confining.Comment: LaTeX (amssymb.sty and psfig) 21 pages, 17 figure

    Tau Polarizations in the Three-body Slepton Decays with Stau as the NLSP

    Get PDF
    In the gauge-mediated supersymmetry breaking models with scalar tau as the next-to-lightest supersymmetric particle, a scalar lepton may decay dominantly into its superpartner, tau lepton, and the lightest scalar tau particle. We give detailed formulas for the three-body decay amplitudes and the polarization asymmetry of the outgoing tau lepton . We find that the tau polarizations are sensitive to the model parameters such as the stau mixing angle, the neutralino to slepton mass ratio and the neutralino mixing effect.Comment: 13 pages, 5 figures, RevTe
    • …
    corecore