6 research outputs found

    MOLECULAR EPIDEMIOLOGY OF MULTIDRUG RESISTANT ENTEROBACTER CLOACAE BLOOD ISOLATES FROM A UNIVERSITY HOSPITAL

    Get PDF
    urpose: to evaluate the epidemiological relationship between 3rd generation cephalosporin resistant Enterobacter cloacae blood isolates collected from patients in the University Hospital in Varna city during the period March 2014 and January 2017 and to characterize the ESBLs production in these isolates. Materials and methods: a total of 47 consecutive (nonduplicate) 3rd generation cephalosporin resistant isolates of Enterobacter cloacae, obtained from blood samples of patients admitted in different wards in Varna University Hospital, were investigated. Antimicrobial susceptibility to set of antimicrobial agents was tested by disc diffusion method and Phoenix (BD), and the results were interpreted according to EUCAST guidelines 2017. Identification of ESBL encoding genes was performed by PCR and sequencing. Isolates were genotyped by ERIC PCR. Results: The antimicrobial susceptibility in the whole collection of isolates, shown in decreasing order, is as follows: amikacin, 97.8% < levofloxacin, 76.6% < trimethoprime/ sulphometoxazole, 40.4% < ciprofloxacin, 19% < gentamicin, 8.4% < cefepime, 4.2% < piperacillin/ tazobactam, tobramycin, 2.1%. Multidrug resistance was detected in 70.2% of the isolates. The most widespread enzyme was CTX-M-15, found in 95.5% (n=43). Nine different ERIC types were detected. The dendrogram of similarity revealed three main clones of E. cloacae: Clone I, comprising two closely related subclones (ERIC type A and Aa) (similarity coefficient 0.92), was predominant, detected in Haematology (n=9), Haemodialysis (n=8), ICU (n=6), Cardio surgery (n=3), Pulmonology (n=4) and Gastroenterology (n=1); Clones II (ERIC type C) and III were presented by 5, and 3 isolates with identical profiles, obtained from patients, hospitalized in different wards. The ERIC profiles K, L, M and P, were found in single isolates only and were interpreted as sporadic. Conclusions: multi-drug resistance in E. cloacae was associated with successful intrahospital dissemination of three CTX-M-15 producing E. cloacae clones. Clone I was predominant, demonstrating high cross-transmission, epidemic and invasive potential. BlaCTX-M-15 was identified as a major mechanism of resistance to 3rd generation cephalosporins in E. cloacae

    Microbiological and Molecular Genetic Studies on the Prevalence and Mechanisms of Resistance to Beta-Lactams and Quinolones in Clinically Relevant Enterobacter Spp. // ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ ΠΈ молСкулярно-Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈ проучвания Π²ΡŠΡ€Ρ…Ρƒ разпространСниСто ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π½Π° рСзистСнтност към Π±Π΅Ρ‚Π°-Π»Π°ΠΊΡ‚Π°ΠΌΠΈ ΠΈ Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΠΈ Enterobacter spp.

    No full text
    This study aims to investigate the species composition, sensitivity and mechanisms of resistance to beta-lactams and quinolones in clinically significant isolates of Enterobacter spp., collected at St. Marina University Hospital - Varna for the period 2014-2017., as well as to determine the clonal relationship of the isolates. One hundred and seventy-five clinical isolates, isolated between March 2014 and January 2017 at St. Marina University Hospital - Varna, were investigated. The study also included an E. cloacae isolate from a hospital environment. The analysis of the results obtained in our research and its comparison with the literature gives us the reason to draw the following conclusions: 1) The examined isolates E. cloacae complex belonged to 99.2% of the species E. hormaechaei. Conventional identification methods, particularly the Phoenix100 automated system, do not have sufficient discriminatory power to distinguish the species in the E. cloacae complex. Hsp60 sequencing is a rapid and specific method for identification and distinguishing species in Enterobacter cloacae complex. 2) We found a high level of resistance (57%) to third-generation cephalosporins in the studied isolates as well as a high level of resistance to the most commonly used antimicrobial drugs in the clinical practice: piperacillin/tazobactam, ceftazidime, ciprofloxacin and gentamicin. Following the carbapenem imipenem and meropenem, the highest activity against Enterobacter spp. was amikacin. 3) The phenotypic methods for detecting ESBLs in clinical isolates of Enterobacter spp. showed unsatisfactory sensitivity. 4) Molecular genetic studies have shown resistance to third-generation cephalosporins among Enterobacter spp. isolates are due to the presence of ESBLs enzymes in over 85%, with the leading importance of CTX-M-15 for E. cloacae complex and CTX-M-3 ESBLs for E. aerogenes. In single isolates, we detected SHV-12 ESBL production. In non-ESBLs-producing isolates, resistance is most likely due to the hyperproduction of AmpC enzymes. Only one isolate has been shown to produce the DHA-1 enzyme. 5) Conjugation experiments demonstrated the plasmid localization of the ESBLs genes and PMQR and confirmed their contribution to the development of resistance to third-generation cephalosporins and selection of quinolone resistance. 6) The epidemiological study found extensive intra-hospital dissemination and long-term presence of one major clone (clone A) of E. cloacae complex with pronounced invasive potential. The microbiological study of the hospital environment proved E. cloacae complex identical (clone A, ERIC type Aa) with clinical isolates from different hospital units. 7) In 59% of Enterobacter spp. we found a presence of PMQR with qnrB dominance (90%) and a relatively low prevalence of qnrA, qnrS and aac (6') - Ib-cr (single isolates). QnrB was associated with CTX-M-15, qnrA - with SHV-12, and qnrS - with CTX-M-3. The only isolate with the qnrB4 allele produces CTX-M-3 and DHA-1. In over 50% of the isolates, we have shown chromosomal mutations for the gyrA and parC genes.Π¦Π΅Π»Ρ‚Π° Π½Π° настоящия дисСртационСн Ρ‚Ρ€ΡƒΠ΄ Π΅ Π΄Π° сС ΠΏΡ€ΠΎΡƒΡ‡Π°Ρ‚ видовия ΡΡŠΡΡ‚Π°Π², чувствитСлността ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π½Π° рСзистСнтност към Π±Π΅Ρ‚Π°-Π»Π°ΠΊΡ‚Π°ΠΌΠΈ ΠΈ Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½ΠΎ - Π·Π½Π°Ρ‡ΠΈΠΌΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Enterobacter spp., ΠΊΠΎΠ»Π΅ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€Π°Π½ΠΈ Π² Π£ΠœΠ‘ΠΠ›β€™β€™ Π‘Π²Π΅Ρ‚Π° ΠœΠ°Ρ€ΠΈΠ½Π°β€™β€™ – Π’Π°Ρ€Π½Π° Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° 2014 - 2017 Π³., ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π΄Π° сС ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈ ΠΊΠ»ΠΎΠ½Π°Π»Π½Π°Ρ‚Π° ΡΠ²ΡŠΡ€Π·Π°Π½ΠΎΡΡ‚ Π½Π° ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅. Π’ΡŠΠ² Π²Ρ€ΡŠΠ·ΠΊΠ° с Ρ‚ΠΎΠ²Π° бяха ΠΏΡ€ΠΎΡƒΡ‡Π΅Π½ΠΈ сто сСдСмдСсСт ΠΈ ΠΏΠ΅Ρ‚ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚Π°, ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½ΠΈ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° ΠΌΠ°Ρ€Ρ‚ 2014 Π³.- януари 2017 Π³. Π² Π£ΠœΠ‘ΠΠ› '' Π‘Π²Π΅Ρ‚Π° ΠœΠ°Ρ€ΠΈΠ½Π°'', Π’Π°Ρ€Π½Π°. Π’ ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅Ρ‚ΠΎ бСшС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ ΠΈ Π΅Π΄ΠΈΠ½ ΠΈΠ·ΠΎΠ»Π°Ρ‚ E. cloacae ΠΎΡ‚ Π±ΠΎΠ»Π½ΠΈΡ‡Π½Π° срСда. ΠΠ½Π°Π»ΠΈΠ·ΡŠΡ‚ Π½Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈ Π² Π½Π°ΡˆΠΈΡ‚Π΅ изслСдвания ΠΈ ΡΡŠΠΏΠΎΡΡ‚Π°Π²ΠΊΠ°Ρ‚Π° ΠΈΠΌ с Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Π°Ρ‚Π° информация Π½ΠΈ Π΄Π°Π²Π°Ρ‚ основаниС Π΄Π° Π½Π°ΠΏΡ€Π°Π²ΠΈΠΌ слСднитС ΠΈΠ·Π²ΠΎΠ΄ΠΈ: 1) Π˜Π·ΡΠ»Π΅Π΄Π²Π°Π½ΠΈΡ‚Π΅ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Π•. cloacae complex ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ…Π° Π² 99.2% към Π²ΠΈΠ΄Π° E. hormachaei. ΠšΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° идСнтификация ΠΈ Π² частност Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€Π°Π½Π°Ρ‚Π° систСма Phoenix100 няма Π΄ΠΎΡΡ‚Π°Ρ‚ΡŠΡ‡Π½Π° дискриминираща сила Π΄Π° Ρ€Π°Π·Π³Ρ€Π°Π½ΠΈΡ‡ΠΈ Π²ΠΈΠ΄ΠΎΠ²Π΅Ρ‚Π΅ ΠΎΡ‚ E. cloacae complex. Нsp60 сСквСниранСто Π΅ Π±ΡŠΡ€Π· ΠΈ спСцифичСн ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π° идСнтификация ΠΈ Ρ€Π°Π·Π³Ρ€Π°Π½ΠΈΡ‡Π°Π²Π°Π½Π΅ Π½Π° Π²ΠΈΠ΄ΠΎΠ²Π΅Ρ‚Π΅ Π² Enterobacter cloacae complex. 2) УстановихмС високо Π½ΠΈΠ²ΠΎ Π½Π° рСзистСнтност (57%) към цСфалоспорини ΠΎΡ‚ III-Ρ‚Π° гСнСрация Π² ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π°Ρ‚Π° колСкция ΠΎΡ‚ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ високо Π½ΠΈΠ²ΠΎ Π½Π° рСзистСнтност към Π½Π°ΠΉ-чСсто ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈΡ‚Π΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΈ лСкарствСни ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½Π°Ρ‚Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°: piperacillin/tazobactam, ceftazidime, ciprofloxacin ΠΈ gentamicin. Π‘Π»Π΅Π΄ ΠΊΠ°Ρ€Π±Π°ΠΏΠ΅Π½Π΅ΠΌΠΈΡ‚Π΅ imipenem ΠΈ meropenem, с Π½Π°ΠΉ - голяма активност срСщу Enterobacter spp. сС ΠΎΡ‚Π»ΠΈΡ‡Π°Π²Π° amikacin. 3) ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ‚Π΅ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° дСтСкция Π½Π° ESBLs ΠΏΡ€ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Enterobacter spp. ΠΏΠΎΠΊΠ°Π·Π°Ρ…Π° Π½Π΅Π·Π°Π΄ΠΎΠ²ΠΎΠ»ΠΈΡ‚Π΅Π»Π½Π° чувствитСлност. 4) Π§Ρ€Π΅Π· молСкулярно-Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈ изслСдвания Π΄ΠΎΠΊΠ°Π·Π°Ρ…ΠΌΠ΅, Ρ‡Π΅ рСзистСнтността към цСфалоспорини ΠΎΡ‚ III-Ρ‚Π° гСнСрация срСд ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Enterobacter spp. сС дълТи Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π½Π° ESBLs Π΅Π½Π·ΠΈΠΌΠΈ Π² Π½Π°Π΄ 85%, с Π²ΠΎΠ΄Π΅Ρ‰ΠΎΡ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π° CTX-M-15 Π·Π° Π•. cloacae complex ΠΈ CTX-M-3 ESBLs Π·Π° E. aerogenes. ΠŸΡ€ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ установихмС продукция Π½Π° SHV-12 ESBL. ΠŸΡ€ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Π±Π΅Π· продукция Π½Π° ESBLs рСзистСнтността сС дълТи Π½Π°ΠΉ-вСроятно Π½Π° хипСрпродукцията Π½Π° AmpC Π΅Π½Π·ΠΈΠΌΠΈ. Π‘Π°ΠΌΠΎ ΠΏΡ€ΠΈ Π΅Π΄ΠΈΠ½ ΠΈΠ·ΠΎΠ»Π°Ρ‚ Π±Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° продукция Π½Π° DHA-1 Π΅Π½Π·ΠΈΠΌ. 5) ΠšΠΎΠ½ΡŽΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΈΡ‚Π΅ СкспСримСнти Π΄ΠΎΠΊΠ°Π·Π°Ρ…Π° ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Π°Ρ‚Π° локализация Π½Π° ESBLs Π³Π΅Π½ΠΈΡ‚Π΅ ΠΈ PMQR ΠΈ ΠΏΠΎΡ‚Π²ΡŠΡ€Π΄ΠΈΡ…Π° приноса ΠΈΠΌ Π·Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π½Π° рСзистСнтност към цСфалоспорини ΠΎΡ‚ III-Ρ‚Π° гСнСрация ΠΈ сСлСктиранС Π½Π° Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΎΠ²Π° рСзистСнтност. 6) Π•ΠΏΠΈΠ΄Π΅ΠΌΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΡ‚ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅ установи ΡˆΠΈΡ€ΠΎΠΊΠ° Π²ΡŠΡ‚Ρ€Π΅Π±ΠΎΠ»Π½ΠΈΡ‡Π½Π° дисСминация ΠΈ Ρ‚Ρ€Π°ΠΉΠ½ΠΎ ΠΏΡ€ΠΈΡΡŠΡΡ‚Π²ΠΈΠ΅ Π½Π° Π΅Π΄ΠΈΠ½ основСн ΠΊΠ»ΠΎΠ½ (ΠΊΠ»ΠΎΠ½ А) E. cloacae complex с ΠΈΠ·Ρ€Π°Π·Π΅Π½ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π΅Π½ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π». ΠŸΡ€ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΡ‚ΠΎ изслСдванС Π½Π° Π±ΠΎΠ»Π½ΠΈΡ‡Π½Π° срСда Π±Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½ ΠΈΠ·ΠΎΠ»Π°Ρ‚ E. cloacae complex, Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π΅Π½ (ΠΊΠ»ΠΎΠ½ А, ERIC Ρ‚ΠΈΠΏ Аа) с ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ Π½Π° Π±ΠΎΠ»Π½ΠΈΡ†Π°Ρ‚Π°. 7) Π’ 59% ΠΎΡ‚ изслСдванитС ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Enterobacter spp. установихмС Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π½Π° PMQR с Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€Π°Π½Π΅ Π½Π° qnrB (90%) ΠΈ сравнитСлно слабо разпространСниС Π½Π° qnrA, qnrS ΠΈ aac(6')-Ib-cr (Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ). QnrB сС асоциира с продукция Π½Π° CTX-M-15, qnrA - с SHV-12, Π° qnrS - с продукция Π½Π° CTX-M-3. ЕдинствСният ΠΈΠ·ΠΎΠ»Π°Ρ‚ с Π°Π»Π΅Π» qnrB4 ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€Π° CTX-M-3 ΠΈ DHA-1. Π’ Π½Π°Π΄ 50% ΠΎΡ‚ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ…ΠΌΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π½Π° Ρ…Ρ€ΠΎΠΌΠΎΠ·ΠΎΠΌΠ½ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π·Π° gyrA ΠΈ parC Π³Π΅Π½ΠΈΡ‚Π΅

    Etiological spectrum of enteric infections in patients hospitalized in the university hospital `Saint Marina` - Varna

    No full text
    Π¦Π΅Π»: Π΄Π° сС ΠΏΡ€ΠΎΡƒΡ‡ΠΈ Стиологичния ΡΠΏΠ΅ΠΊΡ‚ΡŠΡ€ ΠΈ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΡ‡Π½Π°Ρ‚Π° рСзистСнтност Π½Π° Π½Π°ΠΉ-чСститС ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΈΡ‚Π΅Π»ΠΈ Π½Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π½Π° гастро-интСстиналния Ρ‚Ρ€Π°ΠΊΡ‚ (Π“Π˜Π’) Π² ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, хоспитализирани Π² ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ·Π½ΠΈΡ‚Π΅ ΠΈ Π½Π΅-ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ·Π½ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ Π½Π° ΠœΠ‘ΠΠ›`Π‘Π²Π΅Ρ‚Π° ΠœΠ°Ρ€ΠΈΠ½Π°` - Π’Π°Ρ€Π½Π° Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° юли 2016 - Ρ„Π΅Π²Ρ€ΡƒΠ°Ρ€ΠΈ 2017Π³. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ: изслСдвани са ΠΎΠ±Ρ‰ΠΎ 2165 Ρ„Π΅ΠΊΠ°Π»Π½ΠΈ ΠΏΡ€ΠΎΠ±ΠΈ Π·Π° Π½Π°ΠΉ-чСститС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»Π½ΠΈ ΠΈ вирусни ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ·Π½ΠΈ Π°Π³Π΅Π½Ρ‚ΠΈ: Salmonella spp., Shigella spp., Y. enterocolitica, V. cholerae (Π±Ρ€ΠΎΠΉ изслСдвани ΠΏΡ€ΠΎΠ±ΠΈ, n=2047), E. coli (n=1311), Campylobacter spp. (n=50), C. difficile (n=428), Rotavirus, Norovirus, Adenovirus ΠΈ Astrovirus (n=560) Ρ‡Ρ€Π΅Π· ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π΅Π»Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΈΡ‚Π΅Π»ΠΈ ΠΈ ΠΈΠΌΡƒΠ½ΠΎ-хроматографски Π·Π° вируснитС, C. difficile ΠΈ Campylobacter spp. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ: ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π½ΠΈΡ‚Π΅ Ρ„Π΅ΠΊΠ°Π»Π½ΠΈ ΠΏΡ€ΠΎΠ±ΠΈ ΠΎΡ‚ общия Π±Ρ€ΠΎΠΉ изслСдвани ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΈ са 19.9% (n=430). Вирусна Стиология Π½Π° инфСкцията Π±Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° Π² 66.7% ΠΎΡ‚ всички ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΈ (Rotavirus, 50%; Norovirus, 7.4%; Adenovirus, 7%; Astrovirus, 2.3%); Π΄Π΅Π»ΡŠΡ‚ Π½Π° ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Salmonella spp., Shigella spp., Π΅Π½Ρ‚Π΅Ρ€ΠΎΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈ E. coli ΠΈ Campylobacter spp. ΠΎΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π½ΠΈΡ‚Π΅ Ρ„Π΅ΠΊΠ°Π»Π½ΠΈ ΠΏΡ€ΠΎΠ±ΠΈ Π±Π΅ ΡΡŠΠΎΡ‚Π²Π΅Ρ‚Π½ΠΎ 10.9%, 1.4%, 1.6% ΠΈ 1.6%. ΠžΡ‚ изслСдванитС ΠΎΠ±Ρ‰ΠΎ 428 ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π·Π° C. difficile, токсигСнни Ρ‰Π°ΠΌΠΎΠ²Π΅ бяха ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€Π°Π½ΠΈ Π² 17.8%, ΠΊΠ°Ρ‚ΠΎ ΡΡŠΠΎΡ‚Π²Π΅Ρ‚Π½ΠΎ 16.6% (n=64) ΠΎΡ‚ Ρ„Π΅ΠΊΠ°Π»Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠ±ΠΈ ΠΎΡ‚ Π½Π΅-ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ·Π½ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ (n=385) бяха ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π½ΠΈ ΠΈ 27.9% (n=12) ΠΎΡ‚ Ρ‚Π΅Π·ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈ ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, хоспитализирани Π² Π˜Π½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ·Π½ΠΈΡ‚Π΅ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ Π½Π° ΠœΠ‘ΠΠ›`Π‘Π²Π΅Ρ‚Π° ΠœΠ°Ρ€ΠΈΠ½Π°` (n=43). ΠŸΡ€ΠΈ 14 ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈΡ‚Π΅ във Π²ΡŠΠ·Ρ€Π°ΡΡ‚Ρ‚Π° Π΄ΠΎ 3Π³. бяха Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΈ случаи Π½Π° ΠΊΠΎΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ (Adenovirus + Astrovirus + Rotavirus + Norovirus; Astrovirus + C. difficilae + S. enteritidis; Rotavirus + Adenovirus + S. enteritidis ΠΈ Π΄Ρ€.). Π‘Ρ€Π΅Π΄ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Salmonella spp. Π½Π°ΠΉ-чСстият сСротип Π±Π΅ S. enteritidis (n=29), слСдван ΠΎΡ‚ S. typhimurium (n=14). РСзистСнтността Π½Π° ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈΡ‚Π΅ Salmonella spp., към Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΡ†ΠΈ Π΅ ΡΡŠΠΎΡ‚Π²Π΅Ρ‚Π½ΠΎ: pefloxacin - 4%; trimethoprim/sulfΠ°methoxazole - 8.5%; ampicillin - 40%. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: с Π½Π°ΠΉ - голямо Π΅Ρ‚ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π·Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈΡ‚Π΅ Π½Π° Π“Π˜Π’ са вируснитС Π°Π³Π΅Π½Ρ‚ΠΈ, с Π²ΠΎΠ΄Π΅Ρ‰ΠΎΡ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π° Rotavirus Π·Π° Π²ΡŠΠ·Ρ€Π°ΡΡ‚Ρ‚Π° Π΄ΠΎ 3Π³., слСдвани ΠΎΡ‚ C. difficile ΠΈ Salmonella spp. Π₯ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΈΡ‚Π΅ ΠΈ trimethoprim/sulfΠ°methoxazole са със ΡΡŠΡ…Ρ€Π°Π½Π΅Π½Π° активност срСщу Salmonella spp.Aim: to study the etiological spectrum and antimi- crobial resistance of most frequently isolated infectious agents of enteric infections in patients, hospitalized in the infectious and non-infectious wards of University Hospital `Saint Marina` - Varna for the period July 2016 - February 2017.Мaterial and methods: a total of 2165 fecal sam- ples were tested for the most important bacterial and viral agents: Salmonella spp., Shigella spp., Y. en- terocolitica, V. cholerae (tested samples, n=2047), E. coli (n=1311), Campylobacter spp. (n=50), C. difficile (n=428), Rotavirus, Norovirus, Adenovirus and As- trovirus (n=560).Results: The positive fecal samples were 19.9% (n=430). Viral etiology was identified in 66.7% of all positive samples: Rotavirus, 50%; Norovirus, 7.4%;Adenovirus, 7%; Astrovirus, 2.3%; Salmonella spp., Shigella spp., EPEC and Campylobacter spp. were de- tected in 10.9%, 1.4%, 1.6% and 1.6% respectively. In the group of 428 samples tested for C. difficile, toxi- genic strains were identified in 17.8% (16.6% (n=64) from the samples, collected from the non-infectious wards (n=385) and respectively - 27.9% (n=12) from these, obtained from patients, hospitalized in the In- fectious wards of the Hospital (n=43). Co-infections were found in 14 patients in the age of 0 - 5 years: Ade- novirus + Astrovirus + Rotavirus + Norovirus; Astro-virus + C. difficile + S. enteritidis; Rotavirus + Adeno- virus + S. enteritidis, etc. Among Salmonella spp. iso- lates, S. enteritidis (n=29) and S. typhimurium (n=14) were the most common serotypes. The resistance rates of Salmonella spp. isolates to antimicrobial agents is as followes: pefloxacin - 4%; trimethoprim/sulfΠ°methox- azole - 8.5%; ampicillin - 40%.Conclusion: The viral pathogens were the most commonly identified etiological agents, with the lead- ing role of Rotavirus in the age of 0 - 5 years, followed by C. difficile and Salmonella spp. Quinolones and tri- methoprim/sulfΠ°methoxazole are with preserved ac- tivity against Salmonella spp

    ANTIMICROBIAL SUSCEPTIBILITY OF CLINICALLY SIGNIFICANT ISOLATES OF ENTEROBACTER SPP., OBTAINED FROM PATIENTS, HOSPITALISED IN VARNA UNIVERSITY HOSPITAL DURING THE PERIOD 2014 – 2016

    No full text
    Purpose: Rapidly increasing antimicrobial resistance in medically important bacterial species from family Enterobacteriaceae is one of the most significant microbiological, clinical and epidemiological issues of modern medicine. The aim of this study is to investigate the antibiotic susceptibility of clinically significant isolates of Enterobacter spp., obtained from patients, hospitalized in University Hospital β€œSaint Marina” – Varna during the period 2014 – 2016. Material and methods: a total of 433 clinical isolates of Enterobacter spp.from blood cultures, urine and wound secretions were studied. The species identification was made by conventional, semi-automated (Crystal, BD) and automated systems (Phoenix, BD). The susceptibility to piperacillin/tazobactam (TZP), ceftazidime (CAZ), meropenem (MEM), gentamicin (Gm), amikacin (Ak), ciprofloxacin (CIP), levofloxacin (LVX), trimethoprime/sulfamethoxazole (SXT) and tetracycline (Tet) was tested by disc-diffusion method and / or automated system Phoenix 100, BD. The results were interpreted according to EUCAST 2016 guidelines. Results: The resistance in the studied collection of isolates, shown in increasing order is as follows: Аk, 4.2% <LVF, 25.4% <TZP, 37.4% <Tet, 38.7% <SXT, 40% <CIP, 44.1% <Gm, 49.7% <CAZ, 57%. Meropenem demonstrated fully preserved activity. In the group of CAZ resistant isolates, the levels of antimicrobial resistance are: Аk, 5.7% <LVF, 42.9% <TΠ΅t, 52.4% <SXT, 60.3% <TZP, 64.4% <CIP, 84.6% <Gm, 86.2%. The rate of CAZ resistant Enterobacter spp. was 66.9% among the urine isolates, 61.9% - among those from blood culture and 46.3% - in the group of isolates from wound secretions. In the three mentioned groups of isolates, the lowest level of resistance was detected to Ak (1.6%; 4%; 6.9%). The isolates from wound and blood cultures demonstrated the highest level of resistance to Gm (60.3%, 42.9%) and the urine isolates – to Π’et (60%) and CIP (56.9%). Conclusions: CAZ resistant Enterobacter spp. demonstrated significantly higher levels of resistance in comparison to the whole studied group especially to quinolones and aminoglycosides. The highest level of CAZ resistant Enterobacter spp. was detected in the group of urine isolates

    First Report of DHA-1 Producing Enterobacter cloacae Complex Isolate in Bulgaria

    No full text
    The aim of the present study was to reveal the characteristics of an Enterobacter cloacae complex isolate producing DHA-1 AmpC enzyme recovered from a patient hospitalized in St Marina Hospital, Varna.Materials and methods: Susceptibility testing, conjugation experiments, isoelectric focusing, PCR and sequencing were carrying out.Results: Of 176 Enterobacter spp. isolates only one isolate was positive for blaDHA. The sequencing revealed the presence of blaDHA-1 and blaCTX-M-3. The antimicrobial susceptibility testing showed higher resistance rates to almost all beta-lactams (ceftazidime, cefotaxime, cefepime, amoxicillinclavulanic acid, piperacillin/tazobactam), tobramycin, gentamycin, trimethoprim/sulphomethoxazole and quinolones (ciprofloxacin and levofloxacin). The isolate was susceptible to imipenem, meropenem and amikacin. The isoelectric focusing showed a band at pI 5.4 without ceftazidime and cefotaxime activity; a band at pI 7.8 with cefoxitin activity and another - with pI 8.4 with cefotaxime activity. Conjugation experiments were successful only for blaCTX-M-3 carrying determinants.Β Conclusions: To the best of our knowledge this is the first report of DHA-1 producing isolate in Bulgaria. The emergence of DHA-1 producing E. cloacae complex demonstrates the possibility for further dissemination of the gene encoding this enzyme. Infectious control measures are needed for the prevention of this phenomenon

    PYOGENIC LIVER ABSCESS - ETIOLOGICAL SPECTRUM AND SENSITIVITY TO ANTIBIOTICS

    No full text
    Introduction: Pyogenic liver abscess (PLA) is a serious challenge in modern medical practice. The aim of this study was to investigate the etiology and antimicrobial susceptibility of PLA-associated microbial pathogens, diagnosed in hospitalized patients at St. Marina University Hospital of Varna during the period between 2001 and 2016.Materials and Methods: A total of 84 clinical samples (pus aspirates, n=72, bile samples, n=7, and blood cultures, n=5), collected from PLA patients, hospitalized in the Second Surgery Clinic were analyzed. Species identification was performed by conventional methods. Antimicrobial susceptibility was studied by disk diffusion method and Phoenix 100 (BD). The results were interpreted according to CLSI and EUCAST standards.Results: Causative bacterial agents belonging to 15 different species were isolated in 59 cases (in 70%). E. coli (23.7%), K. pneumoniae (20%), E. cloacae (13.5%), E. faecalis (8.5%), P. mirabilis (5%) and P. aeruginosa (5%) dominated in the etiological spectrum. E. coli demonstrated the following levels of antimicrobial susceptibility: imipenem, amikacin, piperacillin/tazobactam, 100%; ceftazidime, cefepime, 90.9%; cefuroxime, 83.3%; amoxicillin/clavulanic acid, 77.8%; gentamicin, 75%; levofloxacin, cefalothin, 66.6%; ciprofloxacin, 63.6%; piperacillin, 58.3%; ampicillin, 45.5%. The following antimicrobial susceptibility rates were determined for K. pneumoniae: imipenem, 100%; amikacin, 92.3%; ceftazidime, cefepime, 80%; cefalothin, cefuroxime, 75%; levofloxacin, gentamicin, 66.6%; ciprofloxacin, 62.5%; piperacillin/tazobactam, 57.1%; piperacillin, 25% and amoxicillin/clavulanic acid, 22.2%.Conclusions: E. coli and K. pneumonia are the predominant pathogens in PLA patients. Carbapenems are the most active antimicrobial agents followed by ceftazidime and cefepime. In the aminoglycoside group, amikacin demonstrates the best in vitro activity
    corecore