184 research outputs found

    Finding the right fit: Enhancing the academic-industry link in the sector for Nutrition undergraduates – a pilot study

    Get PDF
    Academic learning experience prepares students for professional life, enriches their scientific-evidence knowledge, whereas laboratory practicals upskill their experiences applying theory into “real world” scenarios. As most undergraduate programmes are not offering placement year, students rely heavily on their initiatives and networking to maximise their continuous professional development (CPD). This study evaluated the supporting mechanisms between academia and industry/ sector and examined staff and students’ perceptions of existing academia-industry collaborations. An online survey was designed to record perceptions of undergraduate’s nutrition students. This was followed by focus groups to establish students’ perceptions of the relevant professional organisations and their related experiences outside academia. Captured students’ feedback together with the nutrition teaching academics responses in individual semi-structured interviews have portrayed the current academic-industry links, the perceived challenges/barriers and probed sensible roadmap. Six themes uncovered the need for extra nutrition-related work experiences, while the students’ perceptions reflected their learning through course progression, awareness of external opportunities and underpinned that graduate readiness improved progressively with years spent in study. The Academics’ interviews recognized the limited academic-industry collaborations and underpinned many barriers faced; more “top-down” support was identified as a strategy to enhance external links. The study provides a clear lens into the present academic-industry links within the nutrition programmes and ascertained the perceived challenges experienced by students and academics. Collaborations and centralised university communications shall promote a better university experience. Equally, staff-student partnerships will facilitate a new approach to understand both staff and students’ perspectives and enhance learning experiences within the sector

    Many-task computing on many-core architectures

    Get PDF
    Many-Task Computing (MTC) is a common scenario for multiple parallel systems, such as cluster, grids, cloud and supercomputers, but it is not so popular in shared memory parallel processors. In this sense and given the spectacular growth in performance and in number of cores integrated in many-core architectures, the study of MTC on such architectures is becoming more and more relevant. In this paper, authors present what are those programming mechanisms to take advantages of such massively parallel features for the particular target of MTC. Also, the hardware features of the two dominant many-core platforms (NVIDIA's GPUs and Intel Xeon Phi) are also analyzed for our specific framework. Given the important differences in terms of hardware and software in our two many-core platforms, we have considered different strategies based on CUDA (for GPUs) and OpenMP (for Intel Xeon Phi). We carried out several test cases based on an appropriate and widely studied problem for benchmarking as matrix multiplication. Essentially, this study consisted of comparing the time consumed for computing in parallel several tasks one by one (the whole computational resources are used just to compute one task at a time) with the time consumed for computing in parallel the same set of tasks simultaneously (the whole computational resources are used for computing the set of tasks at very same time). Finally, we compared both software-hardware scenarios to identify the most relevant computer features in each of our many-core architectures

    Survival and quality of life benefit after endoscopic management of malignant central airway obstruction

    Get PDF
    Although interventional management of malignant central airway obstruction (mCAO) is well established, its impact on survival and quality of life (QoL) has not been extensively studied.We prospectively assessed survival, QoL and dyspnea (using validated EORTC questionnaire) in patients with mCAO 1 day before interventional bronchoscopy, 1 week after and every following month, in comparison to patients who declined this approach. Material/Patients/Methods: 36 patients underwent extensive interventional bronchoscopic management as indicated, whereas 12 declined. All patients received full chemotherapy and radiotherapy as indicated. Patients of the 2 groups were matched for age, comorbidities, type of malignancy and level of obstruction. Follow up time was 8.0±8.7 (range 1-38) months.Mean survival for intervention and control group was 10±9 and 4±3 months respectively (p=0.04). QoL improved significantly in intervention group patients up to the 6(th) month (p<0.05) not deteriorating for those surviving up to 12 months. Dyspnea decreased in patients of the intervention group 1 month post procedure remaining reduced for survivors over the 12th month. Patients of the control group had worse QoL and dyspnea in all time points.Interventional management of patients with mCAO, may achieve prolonged survival with sustained significant improvement of QoL and dyspnea

    Drag Reduction by Polymers in Turbulent Channel Flows: Energy Redistribution Between Invariant Empirical Modes

    Full text link
    We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows respectively. The modes are obtained empirically using the Karhunen-Loeve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes as proposed in some previous theories.Comment: 11 pages, 13 figures, included, PRE, submitted, REVTeX

    Behavioral features in Prader-Willi syndrome (PWS) : consensus paper from the International PWS Clinical Trial Consortium

    Get PDF
    UDBELLATERRAPrader-Willi syndrome (PWS) is a rare neurodevelopmental genetic disorder associated with a characteristic behavioral phenotype that includes severe hyperphagia and a variety of other behavioral challenges such as temper outbursts and anxiety. These behaviors have a significant and dramatic impact on the daily functioning and quality of life for the person with PWS and their families. To date, effective therapies addressing these behavioral challenges have proven elusive, but several potential treatments are on the horizon. However, a limiting factor for treatment studies in PWS is the lack of consensus in the field regarding how to best define and measure the complex and interrelated behavioral features of this syndrome. The International PWS Clinical Trials Consortium (PWS-CTC, ) includes expert PWS scientists, clinicians, and patient advocacy organization representatives focused on facilitating clinical trials in this rare disease. To address the above gap in the field, members of the PWS-CTC "Behavior Outcomes Working Group" sought to develop a unified understanding of the key behavioral features in PWS and build a consensus regarding their definition and description. The primary focus of this paper is to present consensus definitions and descriptions of key phenotypic PWS behaviors including hyperphagia, temper outbursts, anxiety, obsessive-compulsive behaviors, rigidity, and social cognition deficits. Patient vignettes are provided to illustrate the interrelatedness and impact of these behaviors. We also review some available assessment tools as well as new instruments in development which may be useful in measuring these behavioral features in PWS

    Quintessence and Gravitational Waves

    Get PDF
    We investigate some aspects of quintessence models with a non-minimally coupled scalar field and in particular we show that it can behave as a component of matter with −3â‰ČP/ρâ‰Č0-3 \lesssim P/\rho \lesssim 0. We study the properties of gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic stress of the radiation and that their energy spectrum may help to distinguish between inverse power law potential and supergravity motivated potential. We finish by a discussion on the constraints arising from their density parameter \Omega_\GW.Comment: 21 pages, 18 figures, fianl version, accepted for publication in PR
    • 

    corecore