4 research outputs found

    Females of <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae) Experience a Facultative Reproductive Diapause in Northern Greece

    No full text
    Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is a native pest of East Asia that overwinters as an adult in natural and human-made structures. Adult emergence from overwintering sites starts in spring, whereas females produce offspring in early summer on host plants, where most feeding occurs. In this study, we investigated the reproductive physiology of overwintering females of H. halys in Northern Greece, by determining the duration of the preoviposition period and fecundity of individuals that were left to overwinter in natural conditions and were subsequently transferred to chambers with standard conditions monthly, from December 2020 to March 2021. According to our results, overwintering H. halys females do not initiate egg laying once they emerge from overwintering sites, but rather need some additional time to exit diapause and mature reproductively. The mean preoviposition period of overwintering females that were transferred from their overwintering sites to the chambers in December 2020 was 29.0 days, which was significantly longer by 8.3 days than that of females that overwintered until March 2021, and by 13.2 days than the control (26 °C, 60% RH and a 16:8 h light: dark photoperiod). No significant difference among the average number of eggs per egg mass laid by overwintering individuals brought in the chambers in different time intervals and the laboratory colony was observed. However, females that were left to overwinter until March laid a significantly higher number of eggs in total, compared to the ones whose overwintering was disrupted in February. Based on our findings, overwintering females of H. halys experience a facultative reproductive diapause in Northern Greece. Our study was the first to determine the occurrence of diapause of H. halys in N. Greece and our findings could be very valuable for assessing the damage of this pest to early-season crops and designing successful management practices

    The Roles of Mating, Age, and Diet in Starvation Resistance in <i>Bactrocera oleae</i> (Olive Fruit Fly)

    No full text
    The olive fruit fly (Bactrocera oleae (Rossi) (Diptera: Tephritidae)), although a pest of major economic importance for the olive industry, has not been sufficiently studied with respect to the factors affecting its survival resistance to food deprivation. In the present study, we examined the effect of the interaction between mating status (virgin/mated), age class (11–20/21–30/31–40/41–50), and diet quality (protein plus sugar or only sugar) on starvation resistance in B. oleae under constant laboratory conditions. We conducted a total of 16 treatments (2 × 4 × 2 = 16) for each gender. Our results showed that starvation resistance in B. oleae did not differ significantly between females and males. The main conclusions of our study regarding mating status, age, and diet indicated that mated adults showed much less starvation resistance compared to virgins, younger adults endured longer, and the adults fed a restricted diet endured longer than those fed a full diet. A three-way interaction between mating status, diet, and age class was also identified and was the same for both genders. The interaction between mating status, age class, and diet also had a significant influence on starvation resistance in both sexes

    Artificial diet alters activity and rest patterns in the olive fruit fly.

    No full text
    Olive fruit flies, Bactrocera oleae (Diptera: Tephritidae) reared in the laboratory on an artificial diet are essential for the genetic control techniques against this pest. However, the colony's laboratory adaptation can affect the quality of the reared flies. We used the Locomotor Activity Monitor to track the activity and rest patterns of adult olive fruit flies reared as immatures in olives (F2-F3 generation) and in artificial diet (>300 generations). Counts of beam breaks caused by the adult fly activity were used as an estimation of its locomotor activity levels during the light and dark period. Bouts of inactivity with duration longer than five minutes were considered a rest episode. Locomotor activity and rest parameters were found to be dependent on sex, mating status and rearing history. In virgin flies reared on olives, males were more active than females and increased their locomotor activity towards the end of the light period. Mating decreased the locomotor activity levels of males, but not of female olive-reared flies. Laboratory flies reared on artificial diet had lower locomotor activity levels during the light period and more rest episodes of shorter duration during the dark period compared to flies reared on olives. We describe the diurnal locomotor activity patterns of B. oleae adults reared on olive fruit and on artificial diet. We discuss how locomotor activity and rest pattern differences may affect the laboratory flies' ability to compete with wild males in the field
    corecore