20 research outputs found

    Are realized volatility models good candidates for alternative Value at Risk prediction strategies?

    Get PDF
    In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation’s distribution is estimated with the fully parametric method using either the normal or the skewed student distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical and regulatory risk management loss functions, we find that the realized volatility and the augmented GARCH models with the FHS or the EVT quantile estimation methods produce superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed student distribution is also an attractive alternative, especially during periods of high market volatility.High frequency intraday data; Filtered Historical Simulation; Extreme Value Theory; Value-at-Risk forecasting; Financial crisis.

    The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting

    Get PDF
    In this paper, we assess the informational content of daily range, realized variance, realized bipower variation, two time scale realized variance, realized range and implied volatility in daily, weekly, biweekly and monthly out-of-sample Value-at-Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed student distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi-period VaR estimates. The VaR forecasts are evaluated in terms of statistical and regulatory accuracy as well as capital efficiency. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures such as the adjusted realized range and the realized bipower variation, which are immune against microstructure noise bias and price jumps respectively, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Our results highlight the importance of robust high frequency intra-daily data based volatility estimators in a multi-step VaR forecasting context as they balance between statistical or regulatory accuracy and capital efficiency

    Are realized volatility models good candidates for alternative Value at Risk prediction strategies?

    Get PDF
    In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation’s distribution is estimated with the fully parametric method using either the normal or the skewed student distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical and regulatory risk management loss functions, we find that the realized volatility and the augmented GARCH models with the FHS or the EVT quantile estimation methods produce superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed student distribution is also an attractive alternative, especially during periods of high market volatility

    Are realized volatility models good candidates for alternative Value at Risk prediction strategies?

    Get PDF
    In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation’s distribution is estimated with the fully parametric method using either the normal or the skewed student distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical and regulatory risk management loss functions, we find that the realized volatility and the augmented GARCH models with the FHS or the EVT quantile estimation methods produce superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed student distribution is also an attractive alternative, especially during periods of high market volatility

    The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting

    Get PDF
    In this paper, we assess the informational content of daily range, realized variance, realized bipower variation, two time scale realized variance, realized range and implied volatility in daily, weekly, biweekly and monthly out-of-sample Value-at-Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed student distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi-period VaR estimates. The VaR forecasts are evaluated in terms of statistical and regulatory accuracy as well as capital efficiency. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures such as the adjusted realized range and the realized bipower variation, which are immune against microstructure noise bias and price jumps respectively, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Our results highlight the importance of robust high frequency intra-daily data based volatility estimators in a multi-step VaR forecasting context as they balance between statistical or regulatory accuracy and capital efficiency
    corecore