
MPRA
Munich Personal RePEc Archive

Are realized volatility models good
candidates for alternative Value at Risk
prediction strategies?

Dimitrios P. Louzis and Spyros Xanthopoulos-Sisinis and

Apostolos P. Refenes

Athens University of Economics and Business, Bank of Greece

18. April 2011

Online at http://mpra.ub.uni-muenchen.de/30364/
MPRA Paper No. 30364, posted 24. April 2011 13:01 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/30364/


Are realized volatility models good candidates for alternative Value at Risk prediction 

strategies? 

 

Dimitrios P. Louzisa,b,*, Spyros Xanthopoulos-Sisinisa and Apostolos P. Refenesa 

This version: April 2011 

 

Abstract 

In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six 

ARCH-type models, six realized volatility models and two GARCH models augmented with 

realized volatility regressors. The  quantile of the innovation’s distribution is estimated with 

the fully parametric method using either the normal or the skewed student distributions and also 

with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our 

analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which 

covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical 

and regulatory risk management loss functions, we find that the realized volatility and the 

augmented GARCH models with the FHS or the EVT quantile estimation methods produce 

superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed 

student distribution is also an attractive alternative, especially during periods of high market 

volatility. 
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1. Introduction 

The recent 2007 – 2009 financial crisis demonstrated, if nothing else, that the financial 

institutions’ risk management systems were not as adept as previously thought in tracking and 

anticipating the extreme price movements witnessed during that highly volatile period. Nearly all 

financial institutions recorded multiple consecutive exceptions, i.e. days in which the trading 

book losses exceeded the prescribed Value-at-Risk (VaR)1. In several instances, the total number 

of exceptions during the previous trading year exceeded the threshold of ten violations which is 

the set regulatory maximum (Campel and Chen, 2008)2. Consequently, much doubt was cast and 

many questions were raised about the reliability and accuracy of the implemented VaR models, 

systems and procedures.  

However, the criticisms faced by the risk management departments can hardly be attributed 

to a lack of allocated resources or research efforts. VaR measurement and forecasting has been 

one of the most vigorously researched areas in quantitative risk management and financial 

econometrics. It has also enjoyed significant investments both in terms of capex and in human 

capital within banks and financial institutions. In this context, the evaluation of some recently 

proposed volatility models which make use of the informational content in high frequency data 

could reveal some attractive alternative VaR modelling specifications. 

The foundations of modern risk management were laid with the seminal work of Engle 

(1982) who introduced the AutoRegressive Conditional Heteroscedasticity (ARCH) model for 

modeling the conditional heteroscedasticity in financial assets returns. Since then, a plethora of 

ARCH–type models have been proposed in the open literature (see Bollerslev, 2010 for a short 

description for almost all ARCH–type models) and most of them have been included in VaR 

studies. Giot and Laurent (2003a and 2003b) for example, showed that flexible ARCH 

specifications combined with fat tailed distributions can provide accurate VaR forecasts for a 

wide range of assets.   

More recently, Andersen and Bollerslev (1998), Andersen et al. (2001a), Andersen et al. 

(2001b) and Barndorff-Nielsen and Shephard (2002) introduced and promoted the realized 

volatility as a non-parametric approach for measuring the unobserved volatility. In Andersen et 
                                                 
1 Value-at-Risk is the most common measure of downside market risk and is widely adopted by both the financial 
services industry and the regulators. It reflects an asset’s market value loss not be exceeded over a specified holding 
period, with a specified confidence level (see also Section 4).  
2 A. Campel and X. L. Chen are the authors of a VaR survey article in the “Risk” magazine on July 2008. 
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al. (2003), the authors also suggested that standard time series techniques can be used in order to 

model the “observable” realized volatility. These concrete theoretical foundations coupled with 

the increased availability of high quality intraday data for a wider range of assets, fuelled the 

research interest on the use of high frequency data for measuring and forecasting the volatility of 

financial assets. Several authors demonstrated the superiority of realized volatility models over 

ARCH models for volatility forecasting (see Koopman et al., 2005; Martens et al., 2009; 

Martens, 2002 among others), while Giot and Laurent (2004) first utilized high frequency 

intraday data in a VaR forecasting context.  

In Table 1, a concise literature review on the use of intraday data for VaR modeling is 

presented. Nine out of ten studies therein perform a direct or indirect comparison between 

ARCH-type and realized volatility models (except from Clements et al., 2008 who considered 

only realized volatility models). The findings are mixed as five out of nine studies give evidence 

in favor of the use of high frequency data, while the remaining four provide evidence in favor of 

ARCH-type models. Almost all of the researchers implement a fully parametric approach for the 

estimation of the VaR quantiles, i.e. they adopt a specific distributional assumption (e.g. the 

normal or the skewed student distribution) for the innovation process. The use of alternative 

assumptions is quite limited (see Kuester et al., 2006 for an excellent review of alternative VaR 

methods). Finally, the VaR models are almost invariably evaluated in terms of the statistical 

accuracy of their VaR forecasts (implementing Christoffersen’s, 1998 tests for example) and less 

so by their efficiency with respect to specific regulatory provisions.  

In this study, we contribute to this growing literature by examining the day-ahead 10%, 5%, 

1% and 0.5% VaR forecasting performance of fourteen volatility models for three different 

quantile estimation methods and under eight statistical and regulatory evaluation criteria. We 

implement six ARCH – type specifications that include short memory, long memory and 

asymmetric GARCH models, six realized volatility models including two AR(FI)MA and four of 

the latest Heterogeneous Autoregressive (HAR) models and finally, two augmented GARCH 

models that incorporate the realized volatility and the realized power variation introduced by 

Barndoff-Nielsen and Shephard (2004) as explanatory variables.  

Moreover, for each volatility model we implement three VaR quantile estimation methods: 

the fully parametric method using both the normal and the skewed student distributions, the 

semi-parametric filtered historical simulation (FHS) method and the conditional extreme value 
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theory (EVT) method. For the first time, the FHS and the EVT quantile estimation methods are 

combined with the realized volatility models using Giot and Laurent’s (2004) two step 

procedure. Hence, we have in total fifty-six unique VaR models, each estimated for four VaR 

quantiles on an approximately thirteen years (from 1.1.1997 to 09.30.2009) of daily and intra-

daily returns for the S&P 500 cash index. The eight years out-of-sample period includes the 

latest financial crisis, while we also repeat our analysis adjusting the out-of-sample period to 

cover exclusively the 2007-2009 period. 

The performance of the alternative VaR models is assessed using an extensive and diverse 

range of evaluation measures. On top of the usual statistical accuracy tests (e.g. failure rates, 

conditional and unconditional coverage tests, dynamic quantile test and quadratic loss functions), 

we lay particular emphasis in implementing efficiency measures in the form of regulatory 

oriented loss functions, including the one implied by the Market Risk Amendment (MRA) to the 

Basel Accord and a loss function which considers the opportunity cost of capital. On the latter 

two measures we additionally run equal and superior predictive ability tests (Diebold and 

Mariano, 1995; Hansen, 2005) in order to identify the models that satisfy both the statistical 

accuracy and efficiency conditions set herein.  

The remaining of the paper is organized as follows: In section 2 we present the volatility 

models used in this paper. In section 3 we describe the VaR methods while in section 4 the VaR 

evaluation measures are presented. The empirical analysis is presented in Section 5. Section 6 

summarizes and concludes this article.  

 

[Insert Table 1 about here] 

 

2. Volatility modelling and forecasting 

The daily conditional heteroskedastic logarithmic returns of a financial asset, 

, where  is the logarithmic asset price observed at day t , can be 

described by the following process:  

( ) ( )1tr p t p t= − − ( )p t

 

t t t t tr tzμ ε μ σ= + = +  (1) 
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where ( 1t t tE r Iμ −= )  is the conditional mean ( 1tI −  is the available information available 

until ), 1t − (2
1t tVar r Iσ −= )t

t t

 is the conditional variance of the return process and  is a zero 

mean unit variance independently and identically distributed (i.i.d.) process. In order to account 

for the often inherent serial autocorrelation in the financial assets returns process, we model the 

latter using an  specification:  

tz

( )AR k

 

( )tr c L rφ ε= + +  (2) 

 

where  is the lag operator L ( )1t tLy y −=  and ( ) 2
1 2

k
kL L L Lφ φ φ φ= + + +…  is a polynomial of 

order k. Here, we fit an AR(1) model as in Giot and Laurent (2004) and Kuester et al. (2006). 

The conditional variance of the returns process can be modeled with one of the many volatility 

models that have been proposed in the open literature. In this paper, we adopt fourteen volatility 

models from three broad model classes: (i) ARCH – type models, (ii) Realized Volatility models 

and (iii) Augmented GARCH models. The volatility models implemented here are briefly 

presented in the following subsections.   

 

2.1. ARCH – type  models 

In his seminal paper, Engle (1982) proposed the AutoRegressive Conditional 

Heteroscedasticity (ARCH) model as a feasible approach for modeling the conditional 

heteroscedasticity in financial assets return series. Since then, the ARCH based literature has 

being growing fast (see for example the “Glossary to ARCH (GARCH)” by Bollerslev, 2010), 

encompassing today a plethora of generalizations and extensions of the original ARCH model. 

The implementation of (G)ARCH based models in financial asset price volatility forecasting 

applications is considered today common practice among professionals and a benchmark in 

academic research. The ARCH models employed here fall into three broad categories: (i) 

symmetric GARCH models: 

 

– The exponentially weighted moving average (EWMA) model: 
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( ) ( )2 1 2 2
1

1
1 1i

t t i t
i

2
1tσ λ λ ε λ ε λσ

∞
−

− −
=

= − = − +∑ −  (3) 

 

where 0.94λ =  as in RiskMetricsTM (JP Morgan, 1996) and Giot and Laurent (2004). The 

value of λ  determines the persistence in the volatility process. 

 

– The Bollerslev (1986) GARCH(1,1) model:  

 
2 2

1  t t
2

1tσ ω αε βσ−= + + −  (4) 

 

with 0ω > , , 0α β ≥  and 1α β+ <  

 

(ii) asymmetric GARCH models that capture the asymmetric impact3 of market news on the 

volatility process:  

 

– The Glosten et al. (1993) GJR-GARCH, or in short GJR(1,1), model: 

 

( )2 2 2
1 1 1  0t t t t

2
1tσ ω αε γ ε ε βσ− − −= + + Ι < + −  (5) 

 

where  is an indicator function. For ( )Ι ⋅ 0γ >  the impact of past negative returns on the 

conditional variance is greater than the impact of past positive returns. 

 

– The Nelson (1991) Exponential GARCH, or in short EGARCH(1,1), model: 

 

( ) ( )( ) ( )2
1 1 1log   logt t t tz E z zσ ω α γ β σ− − −= + − + + 2

1t−

                                                

 (6) 

 

 
3 The asymmetric impact of bad (good) news, or equivalently of negative (positive) returns on the volatility process 
has been well documented in empirical studies (Bekaert and Wu, 2000; Engle and Ng, 1993; Glosten, Jagannathan 
and Runkle, 1993; Nelson, 1991; Wu, 2001; Zakoian, 1994): negative shocks tend to increase volatility more than 
positive shocks due to leverage effects (see Black, 1976), or volatility feedback (e.g. see Bekaert and Wu, 2000; 
Campbell and Hentchel, 1992; French, Schwert and Stambaugh, 1987; Pindyc, 1984; Wu 2001). 
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where t tz tε σ≡  are the standardized errors. The term ( )( )1t tz E zα − −− 1  is referred to as 

the “size effect” of past shocks while the term 1tzγ −  is referred to as the “sign effect” of past 

shocks on current conditional variance. For 0γ <  a negative surprise would generate more 

volatility than a same magnitude positive one. 

 

– The Asymmetric Power ARCH (APARCH) model proposed by Ding et al. (1993). The 

APARCH(1,1) is defined as: 

 

( )1 1 t t t
δ

1t
δ δσ ω α ε γε βσ− −= + − + −  (7) 

 

where δ ( 0δ > )  is the Box-Cox transformation of the conditional standard deviation, while 

the parameter γ , with 1 1γ− < < , captures the leverage effects.  

 

 And finally, (iii) long memory GARCH models:4   

– Bailie et al. (1996) proposed the Fractionally Integrated GARCH (FIGARCH) model. The 

FIGARCH(1,d,1) is defined as:  

 

( )( )2 2
1  1 1 1 d

t t L L L L 2
tσ ω βσ β α β ε−

⎡= + + − − − − −⎣
⎤
⎦  (8) 

 

where 0ω > , 1α β+ <

d

 and  is the long memory, or fractional differencing parameter 

which captures the long range dependence in the conditional variance. For values of the 

differencing parameter  between 0 and 1, the shock to the volatility process exhibits a slow 

hyperbolic rate of decay. As the term (  in 

d

)1 dL− (8) is an infinite summation, the FIGARCH 

obtains an infinite order specification which in practice is truncated at 1000 lags, as 

suggested in Baillie et al. (1996). 

                                                 
4 In a short memory GARCH model, a shock to the volatility process would die out at a fast exponential rate. 
Nonetheless, many authors (see for example Andersen and Bollerslev, 1997; Ding et al., 1993) have argued that the 
impact of shocks on market volatility could persist for longer periods of time, before eventualy dying out. 
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2.2. Realized Volatility (RV) models 

In this study, we implement the realized volatility models for Value at Risk forecasting 

following the two step procedure proposed in Giot and Laurent (2004) and later used in 

Angelidis and Degiannakis (2008) and in Shao et al. (2009). In the first step, the realized 

volatility of the return series is modelled using either standard time series AR(FI)MA models, or 

the recently proposed Heterogeneous Autoregressive (HAR) model (see Corsi, 2009; Andersen 

et al., 2007) and some of its extensions. In the second step, the dynamics of the conditional 

realized volatility are taken into account in the return process described in equation (1).   

We model realized volatility as in Andersen et al. (2007) where the logarithmic asset price is 

assumed to follow a continuous time jump diffusion semi-martingale process of the form: 

 

d ( ) ( )d ( )d ( ) ( )d ( )p t t t t W t t q tμ σ κ= + + , 0 t T≤ ≤  (9) 

 

where ( )tμ  is a continuous and locally bounded (finite) variation process, ( )tσ  is the strictly 

positive stochastic volatility process,  is a standard Brownian motion,  is the jump size 

and  is the jump counting process which takes the value of one in the case of a jump and 

zero otherwise. The resulting one-period cumulative return is defined as:  

( )W t ( )tκ

d ( )q t

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1
1

t t

t t
t s t

r t p t p t s ds s dW s sμ σ
− −

− ≤ <

= − − = + + ∑∫ ∫ κ

2κ

 (10) 

 

while its corresponding quadratic variation is given by:  

 

2

1
1

( ) ( )
t

t t
t s t

QV s ds sσ
−

− < ≤

= + ∑∫  (11) 

 

The first part of the summation in equation (11) is the continuous path component, or 

integrated variance ( tIV ) and the second part is the sum of squared jumps. Note that in the 

absence of the discrete jump path component t tQV IV≡ . 
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The quadratic variation can be consistently estimated as the sum of intraday squared returns, 

the so called realized volatility (RV) (see Andersen and Bollerslev, 1998; Andersen et al., 2001a; 

Barndorff-Nielsen and  Shephard, 2002).5 Here, if M  is the total number of intraday returns for 

each day, we define the thj  continuous compounded intraday return of day , as t

( ) ( )( 1)1 −
, 1 j j

t j M Mr p t p t= − + − − + , with 1,...,j M= . Hence, the realized volatility for day t  is 

given by: 

 

( )2

,
1

  
M

t t
j

RV r
=

= ∑ j  (12) 

 

Since the close-to-open price levels are often in practice quite different and the overnight 

returns could bias the realized variance estimation, we scale the realized volatility calculated in 

equation (12) as follows: ( ) ( )22 2 2
,

1

M

t oc co oc t j
j

RV rσ σ σ
=

⎡ ⎤= +⎣ ⎦∑ , where 2
ocσ  and 2

coσ  are the “open-to-

close” and “close-to-open” sample variances respectively (see Martens, 2002; Koopman et al., 

2005). As , the realized volatility converges in probability to the quadratic variation 

which is “by construction … a prime candidate for formal volatility measure” (Andersen et al., 

2006, p. 830) and hence, the daily unobservable volatility can be consistently estimated by 

realized volatility. The latter can be treated as an observable variable and thus standard time 

series techniques can be applied for modeling and forecasting purposes. 

M →∞

Barndoff-Nielsen and Shephard (2004) generalized the quadratic variation process to the 

power variation process by defining the integrated power variation of order p as: 

 

( )
1

( )
t p

t t
IPV p s dsσ

−
= ∫ , 0    (13) 2p< ≤

 

By cumulating absolute intraday returns raised to the thp  power, the authors defined the 

realized power variation (RPV) of order p  as: 

                                                 
5 The sum of squared intraday returns is actually the realized variance. Realized volatility is defined as the square 
root of realized variance. However, the term realized volatility is used interchangeably with the term realized 
variance. 
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( ) 1 (1 / 2)
,

1

 
M pp

t z t
j

jRPV p M rμ− − −

=

= ∑  (14) 

 

where  and 0 2p< < ( )( ) ( )/2 1 1
2 22 1 /p p

z E z pμ = = Γ + Γ  with ~ . For values of z (0,1)N p  

between 0 and 2 and as , it holds that: M →∞ ( )
p

t tRPV p IPV→ . Since absolute intraday returns 

are less sensitive to large price movements and mitigate the impact of outliers, it has been shown 

that as long as , the realized power variation is robust to jumps. Note that when (0, 2)p∈ 2p = , 

the realized power variation reduces to the realized volatility as defined in equation (12), i.e. 

( )2t tRPV RV≡ 6.  

The appealing properties of the realized power variation have encouraged its use in volatility 

forecasting applications. In particular, Forsberg and Ghysels (2007), Ghysels et al. (2006) and 

Ghysels and Sinko (2006) demonstrated the ability of realized absolute variation, i.e. ( )1tRPV , 

to produce superior volatility forecasts compared to the squared return volatility measures. They 

argued that the realized power variation is a better predictor of realized volatility because of its 

robustness to jumps, its smaller sampling error and its improved predictability. In Liu and Maheu 

(2009) and Fuertes et al. (2009), the authors showed that an ( )tRPV ⋅  of order other than one can 

significantly improve the accuracy of volatility forecasts. Next, the realized volatility models 

employed in this study are briefly presented. 

 

2.2.1. AR(FI)MA models for realized volatility  

In Andersen et al. (2001a) and Andersen et al. (2003), the authors proposed a long memory 

Autoregressive Fractionally Integrated Moving Average (ARFIMA) model in order to capture 

the long range dependence in the realized volatility process. They also showed that the logarithm 

of realized volatility is approximately normally distributed. This implies that one could model 

the logarithmic realized volatility instead of the realized volatility itself and conveniently assume 

                                                 
6 In this case, the realized power variation is not robust to jumps and converges to the integrated volatility plus the 
jump component. 
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that the models’ errors are normally distributed. At the same time, the positivity of conditional 

realized volatility estimates is reassured without imposing any nonegativity constraints on the 

model’s parameters. The ( )ARFIMA 1, ,1RVd  model for the logarithm of realized volatility, 

, in terms of deviations from the mean (( ) logd
tlrv RV= )t μ , is defined as: 

 

( )( ) ( )( ) ( )11 1   1RVd d
tL L lrv Lψ μ− − − = + 1 tuδ

)

 (15) 

 

where  is the fractionally differencing parameter and  are the normally distributed errors as RVd

2
u

tu

(0,N σ . ARFIMA models have been extensively employed in volatility forecasting (e.g. see 

Andersen et al., 2003; Pong et al., 2004; Koopman et al., 2005) and VaR forecasting applications 

(e.g. see Giot and Laurent, 2004; Beltratti and Morana, 2005; Angelidis and Degiannakis, 2008).  

 

2.2.2.  ARMA models for realized volatility  

In order to examine whether a short memory implementation can provide accurate volatility 

forecasts, we also include in our analysis an ARMA(2,1) model as in Pong et al. (2004). The 

authors justified the suitability of an ARMA model for capturing the realized volatility process 

based on the findings of Gallant et al. (1999) and Alizadeh et al. (2002). Therein, it was shown 

that the sum of a two AR(1) processes could capture the persistent behavior of realized volatility 

and thus describe the evolution of the volatility process better than a single AR(1) process. The 

summation of two AR(1) processes is equivalently an ARMA(2,1) implementation (Granger and 

Newbold, 1976), given by: 

 

( ) ( )( ) ( )2
1 2 11   d

tL L lrv Lψ ψ μ δ− − − = +1 tu

model is based on the Heterogeneous Market Hypothesis of Muller et al. (1993) and the HARCH 

 (16) 

 

2.2.3. Heterogeneous Autoregressive (HAR) models for realized volatility  

Recently, Corsi (2009) proposed an approximate long memory realized volatility model, the 

Heterogeneous Autoregressive (HAR) model. In contrast to the AR(FI)MA models, the HAR 
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model of Muller et al. (1997) and it approximates the persistence in realized volatility by 

aggregating daily, weekly and monthly volatility components in an autoregressive structure.7  

The logarithmic version of the HAR-RV model is defined as: 

 
( )

( )
( )

( )
( )

( )
( )

0 1 1 1  d w
t t td w mlrv a a lrv a lrv a lrv u− − −= + + + +d m

t t  (17) 

 

here  is the daily logarithmic realized variance and w ( )d
tlrv ( )h

tlrv =  

( )( )1 h l lrv lrv+ + +…  with 5h w, 1 , 2 , 1t t t t t hrv − − − +t tlrv+ = =  and 22h m= =  being the weekly and 

ucture, equivalent to a 

restricted AR(22), is capable of reproducing the long memory behavior of realized volatility, 

while its simple autoregressive functional form requires no more than OLS for the estimation of 

its parameters. 

Similarly, th

monthly volatility components respectively. The embedded long lag str

e HAR-RPV model is defined as: 

 
( )

( )
( )

( )
( )

( )
( )

0 1 1 1  d w
t t td w mlrv a a lrpv a lrpv a lrpv u− − −= + + + +d m

t t  (18) 

 

where  is the logarithm of the daily realized power variation and ( )( ) logd
t tlrpv RPV=

( ) ( )1hv rpv lrpv= + + +…  with 5h w) , 1t t th lrpv lrpv l( , 2 , 1t t t t t hlrp − − − ++ = =  and 22h m= =  being the 

g Liu and 

Maheu (2009), we use an ( )tRPV ⋅  of order 1.5 as a regressor. 

In Corsi et al. (20 e authors accounted for 

weekly and monthly realized power variation components respectively. Here, f

08), th the time varying conditional 

hete

                                                

ollowin

roscedasticity of the normally distributed HAR errors, i.e. the so called “volatility of realized 

volatility” by implementing a GARCH error process and thus improving the model’s fitting and 

its predictive ability. The HAR-RV-GARCH model is given by: 

 

 
7 The Heterogeneous Market Hypothesis (Muller et al., 1993) states that market agents differ with respect to their 
investment horizon, risk aversion, degree of available information, institutional constraints, transaction costs, etc. 
This diversity is identified as the root cause of asset volatility as market agents aim to settle at different asset 
valuations according to their individual market view, preferences and expectations. 
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( )
( )

( )
( )

( )
( )

( )
0 1 1 1  d d w

t t td w mlrv a a lrv a lrv a lrv u− − −= + + + +m
t t

t

 (19) 

,  t u tu σ υ=  and  (20) 2 2
, 1  u t t u tuσ ω α βσ−= + + 2

, 1−

 

where 1|t tIυ − ~  with (0,1)N 1tI −  being the information available until 1t − . 

Extending the work in Corsi and Reno (2009), Louzis et al. (2010) proposed the Asymmetric 

HAR-RPV model allowing for heterogeneous leverage or asymmetric effects modeled as lagged 

standardized returns and absolute standardized returns (analogous to an EGARCH-type 

structure) occurring at distinct time horizons: daily, weekly and monthly. Moreover, in order to 

capture any remaining long range dependence in the volatility of realized volatility, they 

proposed a FIGARCH implementation for the conditional heteroscedasticity of the residuals, 

while at the same time utilizing the realized power variation as a regressor. Based on their 

proposal, we define the AHAR-RPV-GARCH model as: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) ( ) ( )
( ) 1 ( ) 1 ( ) 1

  d d w m d w
t d t w t m t d t w t m

d w m
d t w t m t

lrv a a lrpv a lrpv a lrpv z z z

z z z

ϑ ϑ ϑ

γ γ γ
− − − − −

− − −

= + + + + + + m
t

tu
− +

+ + + +
 (21)   

 

where ( )
1 11

h hh
i it t iz r RV= =− + − += ∑ ∑ 1t i  are the daily ( 1h d= = ), weekly ( ) and monthly 

( ) standardized returns, while the conditional variance of the errors, , is modeled as 

in equation 

5h w= =

tu22h m= =

(20). The leverage effects are captured by the coefficient ( )ϑ ⋅  which is expected to be 

negative and statistically different from zero, should past negative shocks yield a greater impact 

on future volatility.  

 

2.2.4. Incorporating the conditional realized volatility into the return process 

As previously mentioned, we use the two step procedure on the realized volatility estimates 

from the , ARMA(2,1), HAR-RV, HAR-RPV, HAR-RV-GARCH and 

AHAR-RPV-GARCH models in order to integrate the conditional realized volatility into the 

return process. In the first step, the conditional realized volatility estimates are deduced as 

described in Sections 2.2.1-2.2.3 for each of the t=1,…,T in-sample data points using the 

(ARFIMA 1, ,1RVd )
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estimated model parameters and the following transformation (see Beltratti and Morana, 2005; 

Giot and Laurent, 2004): 

 

m
( )
( )( 2

/ 1 ˆ ˆ  exp 0.5
j jj
t t t t u tRV lrv u σ− = − + )  (22) 

 

where  are the estimated residuals, ˆ j
tu j  denotes henceforth the thj  realized volatility model and 

( )
( )2ˆ j

u tσ  is the residuals variance. The  in the subscript parenthesis denotes the time varying 

conditional variance of the residuals in the HAR-RV-GARCH and AHAR-RPV-GARCH 

models.  

t

In the second step, the conditional variance in the return process of equation (1) is modeled 

as a fraction of the estimated conditional realized volatilities i.e.: 

 

m2
/ 1,

j
t tt j gRVσ −=  (23) 

 

Given the distributional assumption for the innovation process , the scaling parameter  

and the parameters of the conditional mean process specified in equation 

tz g

th

(2) are estimated via 

maximum likelihood (see also Section 2.4). This implementation allows for the different 

dynamics of the realized volatility models to be incorporated in the conditional variance of the 

return process, whilst we are able to assess their forecasting ability by ensuring that  is a unit 

variance process. In order to obtain the one step ahead conditional volatility forecast, the 

tz

j  

model’s day ahead realized volatility forecast , , is multiplied by the estimated scaling 

factor . 

m
1/

j
t tRV +

ĝ

 

2.3. Augmented GARCH-R(P)V models 

An alternative approach for accessing the informational content of realized volatility and 

realized power variation in VaR forecasting is to use them as explanatory variables in a GARCH 

model as in Fuertes et al. (2009), Grané and Veiga (2007) and Koopman et al. (2005) i.e.: 
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2 2 2
1 1 1 1 1  t t t bXσ ω α ε β σ− −= + + + t−  (24) 

 

where 1tX −  is either the realized volatility, or the realized power variation at . Again, all 

coefficients in equation (24) are estimated by maximizing the likelihood function. Empirical 

evidence have shown that the GARCH model’s volatility forecasting performance can be 

improved when realized volatility measures are used as additional explanatory variables (e.g. see 

Fuertes et al., 2009; Koopman et al. 2005). However, there is limited empirical evidence on the 

performance of the Augmented GARCH model in VaR forecasting applications (Grané and 

Veiga, 2007). 

1t −

 

2.4. Estimation of the models 

The scaling factor , the conditional mean equation’s coefficients vector and the coefficients 

vector for all the ARCH–type and Augmented GARCH models are estimated with the Quasi 

Maximum Likelihood (QML) method. Here, we consider two distributional forms for the 

innovation process : the Normal (N in short) distribution and the skewed student (skst in short) 

distribution (Lambert and Laurent, 2001).  

g

tz

When , the QML estimates are deduced by maximizing the following 

logarithmic likelihood function with respect to the coefficients vector: 

( 0,1tz iid N∼ )

 

( ) ( )[ ] (25) ∑
=

++−=
T

t
ttN zL

1

22ln2ln
2
1 σπ

)

 

However, the normality assumption has been shown to be inappropriate for the majority of 

financial assets returns (see for example Giot and Laurent, 2004, Giot, 2005 and Ferreira and 

Lopez (2005). Giot and Laurent (2003a, 2004) considered the skewed student distribution which 

takes into account the asymmetry and the excess kurtosis usually observed in the returns series. 

In this case,  follows a standardized (zero mean and unit variance) skewed student distribution, 

i.e. 

tz

 kstd s (0,1, ,tz ii ξ ν∼ , where ν  (with 2>ν ) and ξ  are the degrees of freedom and the 
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asymmetry coefficient respectively and both are estimated along with the coefficients vector. 

The respective logarithmic likelihood function is then defined as: 

 

( ) ( )

( ) ( ) ( )2
22

1

1 2ln ln ln 1 ln ln12 2 2

1 ln 1 ln 1
2 2

t

skst

T
It

t
t

L T S

sz m

ν ν π ν
ξ

ξ

σ ν ξ
ν

−

=

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎜ ⎟= Γ − Γ − − + +⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎪ ⎪+⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎡ ⎤+⎪ ⎪− + + +⎢ ⎥⎨ ⎬−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑

−

 (26) 

 

where  and  are the mean and the standard deviation of the non-standardized skewed student 

distribution and  equals 1 if 

m s

tI smzt /−≥  and -1 if smzt /−< . The estimated coefficients are 

used to compute day ahead forecasts for the conditional mean and variance.8  

 

3. Value at Risk estimation methods  

Value-at-Risk (VaR) has been adopted by practitioners and regulators as the standard method 

of measurement of the market risk of financial assets. It encapsulates in a single quantity the 

potential market value loss of a financial asset over a time horizon h, at a significance or 

coverage level α . Alternatively, it reflects the asset’s market value loss over the time horizon h, 

that is not expected to be exceeded with probability 1 α− , i.e. ( )Pr 1t h t h tr VaR Iα α+ +≤ = − , where 

 is the asset’s return over the period h and t hr + tI  is the available information until time t . Hence, 

VaR is the thα  quantile of the conditional returns distribution defined as: 

 

( )1  t h t hVaR Fα α−
+ +=  (27) 

 

                                                 
8  and  are defined as m s ( )

( ) ( )ξπ

ν ξ
ν

ν
12

2

2
1

−=
Γ

−Γ +

m  and 212 12 ms −⎟
⎠
⎞

⎜
⎝
⎛ −+=

ξ
ξ  respectively. 
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where  is the returns cumulative distribution function (cdf) and F 1F −  denotes the inverse cdf. 

For the returns process of equation (1), the next day’s VaR is given by:  

 

n ( )1
1, 1, 1,ˆ ˆ + t j t j t j zVaR F

α
μ σ −

+ + += α  (28) 

 

where 1,ˆt jμ +  and 1,ˆt jσ +  are the thj  model’s day ahead conditional mean and conditional volatility 

forecasts respectively and  is the inverse cdf of the standardized returns, or innovations, i.e. 1
zF −

( )t t tz r tμ σ= − .  

A pivotal decision in VaR forecasting is the assumed conditional distribution and several 

authors have underlined the inappropriateness of the often used normal distribution (see for 

example Giot and Laurent, 2004; Giot, 2005). Here, we estimate the thα  quantile of the  

process using three alternative methods: the fully parametric method utilizing either the normal 

or the skewed student distribution, the semi-parametric Filtered Historical Simulation (FHS) 

method and the conditional Extreme Value Theory (EVT) method. In the following sections the 

three methods are briefly discussed. 

tz

 

3.1. Fully Parametric method  

In the fully parametric method, the risk manager makes an explicit distributional assumption 

for the innovation process. The conditional distribution of the standardized returns is assumed to 

have a specific functional form and its shape parameters are estimated along with the parameters 

of the conditional mean and of the volatility models, as described in Section 2.4. When normally 

distributed innovations, i.e., ( )0,1tz iid N∼ , are assumed, given a data sample of t=1,…,T daily 

returns tomorrow’s VaR is deduced from:  

 

n
1, 1, 1,ˆ ˆ N

T j T j T jVaR c
α

αμ σ+ + += +  (29) 
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where  is the standard normal ( )αα
1−Φ=Nc thα  quantile which is readily available from 

statistical tables, Φ  is the standard normal cdf, while jT ,1ˆ +μ  and jT ,1ˆ +σ  are the thj  model’s 

conditional mean and volatility forecasts respectively. Since the normal distribution is fully 

characterized by its mean and its variance, it does not require estimation of any additional 

parameters. Due to its simplicity, the normality assumption is widely adopted by practitioners for 

risk management purposes (see McMillan and Kambouroudis (2009)9). Nonetheless, empirical 

evidence suggests that it misspecifies the true conditional distribution of returns, especially in 

volatile periods where extreme price variations are more frequently observed.  

The alternative specification of skewed student distributed innovations, i.e. 

( kst 0,1, ,tz iid s )ξ ν∼ , is more attractive as it captures the asymmetry and the fat tails of the 

returns process: 

 

n
1, 1, 1, , ,ˆ ˆ skst

T j T j T jVaR c
α

α ν ξμ σ+ + += +   (30) 

with 
( ){ }
( ){ }

21
, 2 2

, ,
21

, 2 2

11 /s  if  
1

11 /s  if       
1

st

skst

st

c m
c

c m

α
α νξ

α ν ξ
α

α ν

ξ α
ξ

ξ ξ α
ξ

−−

⎧ ⎡ ⎤+ − <⎪ ⎣ ⎦ +⎪= ⎨
⎪ ⎡ ⎤− + − ≥⎣ ⎦⎪ +⎩

 

 

where , ,
skstcα ν ξ  is the thα  quantile of the unit variance skewed student distribution with ν  degrees 

of freedom and asymmetry parameter ξ , while ,
stcα ν  denotes the quantile function of the 

standardized Student-t density function (see Lambert and Laurent, 2001 and Giot and Laurent, 

2003a). 

 

3.2. Filtered Historical Simulation 

The Filtered Historical Simulation (FHS) method proposed by Hull and White (1998), 

Barone-Alsesi et al. (1998) and Barone-Alsesi et al. (1999) combines the fully parametric 

                                                 
9 The authors provide empirical evidence from 31 stock markets for the RiskMetrics model which assumes a normal 
distribution for the returns. They found that the RiskMetrics model produces adequate volatility forecasts for small 
emerging markets and for broader VaR measures. 
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approach described in the previous section and the non-parametric method of Historical 

Simulation (HS). In the HS method, no assumptions are made for the returns distribution, nor 

any parameter estimation is required. Assuming that asset returns are i.i.d., future VaR can be 

well approximated by the empirical distribution of historical returns. In this case, the VaR is 

calculated as the thα  empirical quantile of the unconditional return distribution of a moving 

window of  historical observations (see also Christoffersen,  2003 and 2009):  w

 

n { } ,1 1 1

w
VaR Quantile rt t

α
ατ τ

⎛
= ⎜+ + − =⎝ ⎠

⎞
⎟  (31) 

  

Despite that HS is a model-free VaR method used extensively by financial institutions10, it 

suffers from several drawbacks such as the choice of the window length and the underlying i.i.d. 

returns assumption. 

FHS retains the simplicity of the HS approach regarding the estimation of the innovations’ 

quantiles. It uses however filtered instead of raw returns in order to account for the dynamic 

structure and the volatility clustering asset returns, whilst capturing any non-normalities of the 

innovation process. Given a data sample of t=1,…,T daily historical returns, the FHS requires 

two steps: In the first step, Gaussian QMLE is employed in order to estimate the coefficients of 

the jth model as well as its conditional mean, jt ,μ̂  and variance, . Then, the historical returns 

are filtered so as to obtain the standardized returns, i.e. 

2
,ˆ jtσ

( ) jtjjtz ,,, ˆ/ˆ ttr ˆ σμ−= . In the second step, 

the resulting sequence of past estimated standardized returns is used for calculating their thα  

quantile. Thus, tomorrow’s VaR for model j is given by: 

 

n { }( )1, 1, 1, , 1
ˆ ˆ ˆ ,

T
T j T j T j t j t

VaR Quantile z
α

μ σ+ + + =
= + α

                                                

 (32) 

 

 
10 Perignon and Smith (2010) reported that from the 64,9% of the banks that revealed their VaR methodology in 
their survey, 73% declare the use of HS. 
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3.3. Extreme Value Theory (EVT) 

As Extreme Value Theory (EVT) is concerned with the tails of a distribution, its application 

in a VaR context especially in periods characterized by abrupt and extreme price movements is 

to say the least, appealing. Following McNeil and Frey (2000), we use the filtered returns , 

t=1,…,T with a distribution function 

jtz ,ˆ

( ) { }zzzF jtjtz ≤= ,, ˆPrˆ  as derived for each model j in order to 

implement the Peaks Over Threshold (POT) EVT method (for details see McNeil and Frey, 

2000; Embrechts et al., 1997). The method effectively models the filtered returns which exceed a 

prespecified threshold U (for the choice of U  see section 3.3.1). The use of the filtered instead 

of the raw returns validates the inherent EVT method i.i.d. assumption, while at the same time it 

accounts for the conditional heteroscedasticity of the returns (Byström, 2004).  

If the magnitude of exceedence of 11z  over  is defined as U i iy z U= − , where 1,..., Ui T=  

and  being the total number of exceedences for a given threshold U , then the distribution of UT

y  given that  is defined as: z U>

 

( ) { } ( ) ( )
( )

Pr
1

z z
U

z

F y U F U
F y z U y z U

F U
+ −

= − ≤ > =
−

, for  (33) 0y ≥

 

Since , and for , equation z y U= +

( ) 1y F= −⎡⎣

z U> (33) can be re-written as 

 and as ( ) ( ) ( )z U z zF z F U F U+⎤⎦ ( )zF U  is equal to ( ) /UT T T− , after some algebra, it 

can be shown that: 

 

( ) ( )(1 U
z U

TF z F y
T

= + − )1

                                                

 (34) 

  

A key result in EVT is that for a sufficiently high threshold U , the conditional distribution 

 in equation ( )UF y (34) converges to the Generalized Pareto Distribution (GPD) (see Balkema 

and de Han, 1974; Pickands, 1975) which is defined as:    

 
 

11 We drop the subscripts and the hat from  in order to simplify the notation. ,ˆt jz
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( )
( )⎪

⎩

⎪
⎨

⎧

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

−

   /exp1

11
/1

,

β
β
ζ

ζ

βζ

y-

yyG
0 if
0 if  

=
≠

ζ
ζ ,  for 0 y z U≤ ≤ −  (35) 

 

where ζ  and 0>β  are the shape and scale parameters respectively. The GPD covers a variety 

of distributions depending on the value of the shape parameter ζ . Heavy tailed distributions 

such as the Pareto, Student t, Cauchy, and the Frechet with power tails, correspond to 0>ζ , 

while the normal and other thin tailed distributions with exponential tails correspond to 0=ζ . 

Short tailed distributions are also accounted for by the GPD when 0<ζ . As most financial time 

series exhibit fat tails, we expect a positive ζ  and for 0≠ζ  and 01+ ζ >β
y , the probability 

density function (pdf) of the GPD in equation (35) is given by (Smith, 1987): 

 

( ) ( ) (1 1/

,
1 1 yg y

)ζ
ζ β βζ

β
− +

= +  (36) 

 

Hence, the tail estimator in equation (34) reduces to: 

 

( ) ( )( )

( )

,

1/ 1/

1 1

1 1 1 1

U
z

U U

TF z G y
T
T Ty z
T T

ζ β

U
ζ ζ

ζ ζ
β β

−

= + −

⎛ ⎞ ⎛ ⎞
= − + = − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

−  (37)  

  

Solving equation (37) for z , the thα  quantile is defined as: 

 

( )1 1z
U

TF U
T

ζ
βα α
ζ

−

−
⎡ ⎤⎛ ⎞
⎢= + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎥  (38) 

 

Both shape and scale parameters can be deduced with maximum likelihood estimation and as 

Hosking and Wallis (1987) showed, for 5.0−>ζ  the maximum likelihood regularity conditions 
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are fulfilled and the estimates are asymptotically normal. Hence, the estimates for ζ  and β  (  

and )  are obtained by maximizing the corresponding log-likelihood function: 

ζ̂

β̂

 

( ) ( )
1

1log 1 log 1
UT

,g U i
i

L T yζβ
ζ β=

⎛ ⎞ ⎛ ⎞
= − − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ζ β  (39) 

 

( )zF UOnce substituted in equation (38) and for an α  - significance level < 1−  or  , 

the 

/UT T

%α  VaR for model j is deduced from: 

 

n ( )1
1, 1,ˆ ˆT j T j T j zVaR F1,

α
μ σ −

+ += + α  (40) +

 

3.3.1. Choosing the threshold level 

The threshold level U  should be carefully selected as it has been characterized the “Achilles’ 

heel” of the POT – EVT method (Christoffersen, 2003, p. 83). The threshold should be 

sufficiently high so that the asymptotic results of Balkema and de Han (1974) and Pickands 

(1975) are valid, while at the same time it should be sufficiently low so that there are enough 

observations for the ML estimations. This is effectively interpreted as a tradeoff between 

unbiasness and efficiency. For a high threshold and subsequently a small number of 

observations, unbiased but volatile ML estimates are produced, while a lower threshold increases 

the number of observations leading to more efficient (less volatile) but biased estimates 

(Embrechts et al., 1997).  

Here, we follow Gencay and Selcuk (2004) and Chan and Gray (2006) who jointly employed 

the Mean Excess Function (MEF) and the Hill plots (Hill, 1975) in order to deduce U  (for a 

detailed discussion see Embrechts et al., 1997). The empirical MEF is defined as the average 

value of exceedances given a threshold U : 

 

( ) (
1

1 UT

i
iU

)M U z U
T =

= −∑EF  (41) 
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Based on the mean excess plot from equation (41), we choose a threshold level U  for which 

the resulting graph is an approximately positive straight line, suggesting that the data are 

generated by a GPD with 0>ζ . The Hill estimator is a simple estimator of ζ  when 0>ζ  (Hill, 

1975): 

 

(
1

1ˆ log /
UT

H i
iU

z U
T

ζ
=

= ∑ )   for  . (42) z U>

 

In the Hill plot, the estimated  values are plotted against different values for U . The 

threshold level is the lowest value of U  from which and over the value of  remains almost 

constant. 

Hζ̂

Hζ̂

    

4. VaR evaluation methods 

The 1996 Market Risk Amendment (MRA) to the Basel Capital Accord states that financial 

institutions can use their own internal VaR models in order to calculate the daily regulatory 

reserved capital. Should however they record too many VaR exceptions, then they are penalized 

with reserving more capital, or even worse, they have to re-evaluate with a view to revise their 

VaR models and systems. On the other hand, the banks profit maximization mandate dictates the 

use of capital in an efficient and productive way which is in effect interpreted as minimization of 

the idle capital. Thus, VaR models are inevitably driven towards achieving a balance between 

accuracy and efficiency. A VaR model should be conservative enough so as to produce the 

prespecified number of violations (in line with the chosen coverage level), whilst keeping VaR 

capital reserves at a minimum. With this practical risk management view in mind, we evaluate 

the VaR models forecasting performance with a variety of statistical accuracy and efficiency 

tests. The evaluation measures are briefly presented in the subsequent sections.  

 

4.1. Failure Rate 

A standard VaR model validation approach is the backtesting procedure where the estimated 

exante VaR is compared with the expost realized returns in order to calculate the number of VaR 
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exceptions, i.e. the number of times the losses exceed the VaR estimates. The result of the 

backtesting procedure is the so called “failure, or hit process” and is described by the following 

indicator function: 

 

1 if 
0 if  

t
t

t t

r VaR
H

r VaR
t
α

α

⎧ <
= ⎨

≥⎩
  (43) 

 

If n is the sample size, we define the number of exceptions as , the number of 

non-exceptions as  and the proportion of failures, or Failure Rate (FR), as 

11
n
t tn == ∑ H

10n n n= − 1ˆ /n nα = . 

The closer the FR is to the predetermined coverage level, the more accurate the VaR model is 

considered to be.   

 

4.2. Unconditional and Conditional Coverage 

From a statistical point of view, an accurate VaR model must exhibit correct conditional 

coverage, meaning that the hit process { } 1

n
t t

H
=

 must be an i.i.d. Bernoulli process with parameter 

α . This is equivalent to testing whether the VaR model generates a Proportion of Failures (PF) 

α̂ , equal to the required coverage level α , conditional on information set  for every point in 

time t , i.e.: 

1t−Ω

 

 ( )1   t tE H tα−Ω = ∀ .  (44) 

 

Christoffersen’s (1998) unconditional coverage test examines whether the VaR model’s 

failure rate is statistically equal to the predetermined coverage level α , ignoring the history of 

the failure process. Under the null hypothesis of accurate unconditional coverage, i.e. 

( )tE H α=  and given the assumption of independence, the Likelihood Ratio (LR) test for 

verifying that α̂ α=  is: 

 

( )( ) ( )(0 1ˆ ˆ2 log 1 log 1n nucLR α α α α⎡= − − −
⎣ )0 1

n n ⎤
⎦

 (45) 
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which follows an asymptotic ( )2 1χ  distribution. Note that the null hypothesis is rejected if 

the VaR model generates too many or too few exceptions while the test ignores the possible 

dependence in the failure process structure. However, the robustness of the  test statistic is 

somehow limited since it is actually an unconditional test, i.e. exceptions are not taken into 

consideration as they occur, rather they are considered over the whole sample period. Although 

the unconditional coverage is accurately evaluated, the inherent variance dynamics are ignored 

and the conditional coverage at specific points in time is ignored. Hence, an otherwise 

inadequate VaR model could be accepted.  

ucLR

The complementary conditional coverage test proposed by Christoffersen (1998) is a joint 

test of correct unconditional coverage and first order independence of the failure process. Under 

the null hypothesis that the exceptions are independently distributed through time and the failure 

rate is equal to the prespecified one, the corresponding LR test is:   

 

( ) ( )( ) ( )( ) ( )00 10 001 11 1 2
01 01 11 11ˆ ˆ ˆ ˆ = 2 log 1 1 log 1  2n n nn n nccLR p p p p α α χ⎡ ⎤− − − −

⎣ ⎦
∼  (46) 

 

where ijp  is the transition probability between two consecutive observations from state i to state 

j assuming a first-order Markov chain probability transition matrix between the two possible 

states (a successful VaR estimation, or an exception),  is the number of all occurrences of 

transitions from state i to state j, with 

ijn

, 0,i j 1=  and 1

0
ˆ /ij ij ijj
p n

=
= n∑  are the maximum 

likelihood estimates for ijp . Christoffersen’s test can also reveal information about the 

conditional probability of occurrence of two consecutive exceptions in the VaR model, as well as 

the average time interval between exceptions. A VaR model may be rejected if it generates too 

many, too few, or too clustered exceptions. 

 

4.3. Dynamic Quantile test 

Engle and Manganelli (2004) argued that given the sequence of returns, , it is 

straightforward to generate an i.i.d. failure process  and they proposed a more powerful test. 

tr

tH
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Specifically, they defined t tHit H α= − , where α  is the significance level and they suggested a 

regression based approach to test whether ( )tit 0E H =  and also if  is uncorrelated with the 

variables included in the information set 

tHit

1t−Ω  in equation (44). In matrix notation the regression 

equation can be written as:  where  is the explanatory variables vector and =Hit Xβ X β  is the 

coefficients vector. The authors emphasized on the use of the contemporaneous value of VaR, 

tVaRα , in the explanatory variables set, as well as the use of lagged values of , i.e. 

, with  in our case. Under the null hypothesis , the 

regressors, i.e. the five lags of  and the 

tHit

= 01 2 ,...t tHit Hit− −,Hit t q− 5q =

tHit

0 :H β

tVaRα , should have no explanatory power. The 

corresponding test statistic is: 

 
' ' '

(1 )
LS LSDQ
α α−
β X Xβ  (47) =

 

which follows an asymptotic  distribution, where (2 1pχ + ) p  is the total number of explanatory 

variables used in the regression. 

 

4.4. Quadratic loss Function 

Adhering to the Basel Committee’s guidelines, supervisors are not only concerned with the 

number of failures of a VaR model, but also with the magnitude of these failures. Based on this 

provision, Lopez (1999) proposed the Quadratic Loss Function (QLF) which considers both the 

number of exceptions and their magnitude, calculated as the square of the distance between the 

VaR estimate and the exception:  

 

( )1
  

 0                        if 
t tr VaR

2
 if 

 
t

t t

r VaR

r VaR
t

tQLF
⎧ + −⎪= ⎨
⎪⎩

α α

α

<

≥
 (48) 

 

Hence, large exceptions are penalized more heavily compared to the linear, or binary loss 

function of equation (43). Note that although the model with the smallest average QLF is 
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considered to be the most accurate one, the metric tends to favor models that are too conservative 

and their number of violations is well below the prescribed coverage level. Therefore, we also 

calculate the QLF relative to the number of violations as in Martens et al. (2009): 

 

 11

n
ti

QLF QLF n
=

=∑   (49) 

 

4.5. Mean Relative Scaled Bias 

 Hendricks (1996) proposed the Mean Relative Scaled Bias (MRSB) as a measure of relative 

efficiency of alternative VaR models (see also Engel and Gizyck, 1999). The purpose of the test 

is to identify which of the competing VaR models, once properly scaled to obtain the 

prespecified coverage level, generates the lowest average level of VaR. The VaR forecasts for 

each VaR model j  are multiplied with a scaling factor  in order to obtain the desired 

coverage level 

jSF

α . Then, the resulting scaled VaR, i.e. , is used for 

calculating the mean relative bias of the 

*
,t j j t jSF VaR= ⋅ ,VaR

thj  model as follows:  

 
* *
,

1 *

1 n t j t
j t

t

VaR VaR
MRSB

n VaR=

−
= ∑   (50) 

 

where *
,1

1 J
t j

VaR VaR
J =

= ∑ *
t j  is the average VaR forecast across the different J models for day t. 

The smaller the respective jMRSB  measure is, the more efficient the VaR model is considered to 

be.  

 

4.6. Regulatory loss Function 

The regulatory Market Risk Capital (MRC) loss function implied in the 1996 MRA to the 

Basel Capital Accord is also a widely accepted method for evaluating alternative VaR models 

(see Ferreira and Lopez, 2005; Lopez, 1999 and the discussion therein) and it is given by: 
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( ) ( )600.01 0.01
1

max 10 , 10
60t t t ii

kMRC VaR VaR −=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑   (51) 

 

where  denotes the 1% VaR estimate of day t for a holding period of ten days, while 

 is a multiplier set by the MRA’s traffic light system

( )0.01 10tVaR

k

[

12. Specifically, the value of  is based on 

the number of 1% daily VaR exceptions over the previous 250 trading days. If the model 

produces 4 or less violations, then it is considered sufficiently accurate and the multiplier k  

takes its minimum value of 3. These are the so-called green zone or green light models. If the 

model generates between 5 and 9 violations over the previous trading year then it is placed in the 

yellow zone, or it is given a yellow light. It is also considered acceptable for regulatory purposes, 

with  being set to 3.4, 3.5, 3.65, 3.75 or 3.85, for the corresponding exceptions in the interval 

k

k

]5,9 . A red zone or red light model is one which generates 10 or more exceptions and then k  

takes its maximum value of 4. In this case, the regulators can reject the VaR model and put a 

request to the financial institution to revise their risk management systems.  

 

4.7. Firm Loss Function 

In the Firm Loss Function (FLF) proposed by Sarma et.al (2003), the non-exception days are 

penalized according to the opportunity cost of the reserved capital held by the firm for risk 

management purposes: 

 

( )2
1  if 

  
              if  

t t t
t

t t

r VaR r VaR
FLF

cVaR r VaR
t

t

α α

α α
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 (52) 

 

where  is the firm’s opportunity cost for its reserved capital. Thus, an otherwise accurate model 

producing a limited number of small magnitude violations may be highly inefficient as high daily 

VaR estimates entail additional opportunity costs. Sarma et al. (2003) proposed performing the 

FLF test only to VaR models which satisfied specific statistical test conditions, such as the 

c

                                                 
)12 For the calculation of the MRC, daily VaR is expressed in dollars: (0.01 0.01

1$ 1 expt t tVaR P VaR−
⎡ ⎤= −⎣ ⎦ , where  is 

the asset’s price and is multiplied by 

P

10  to get the 10 day VaR estimates as in Ferreira and Lopez (2005) . 
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Christoffersen’s conditional coverage test and the DQ test. Here, we additionally require the 

fulfillment of the MRA regulatory rules, i.e. a VaR model should not have ten or more violations 

during the previous year as in Sajjad et al. (2008). Thus, the VaR models assessed in terms of the 

FLF are those which fulfilled both the statistical accuracy and the regulatory expectations.   

   

4.8. Equal and Superior Predictive Ability Test for the MRC and FLF loss functions 

The Equal Predictive Ability (EPA) test of Diebold and Mariano (1995) and the more general 

Superior Predictive Ability (SPA) test of Hansen (2005) are used in order to evaluate whether the 

performance differences between different VaR models in the regulatory oriented Market Risk 

Capital and Firm Loss Function tests are statistically significant.  

The EPA test is a pairwise test based on the loss function differential between two competing 

models  and i j , , where ,t i t jd l l= − ,t , ,i t i tl MRC=  or  ,i t i tl FLF ,= . The null hypothesis of equal 

forecasting performance between models i and j implies that the models’ loss function average 

values are equal, i.e. ( ),i t ( j t ),E l E l= , or equivalently that the average of the differential is zero, 

i.e. . As the sample mean of , i.e. ( )tE d 0= td 1
1

n
t td n d−

=∑ t= , is asymptotical distributed as 

( ) ( )( )var d0,n d − → Nμ , the corresponding test statistic is given by: 

 

m ( )var
DM

dt
d

=  ~  (53) (0,1N )

 

where m ( ) (1
0 1ˆvar 2 qd n wκ κκ )ˆγ γ−

== + ∑  is the sample variance, (1 / 1w qκ κ )= − +  is the lag 

window, κ̂γ  is the  order sample autocovariance of  estimated as thκ td

( )( )1ˆ n
t ttn d d d dκ κγ −

−= − −∑ 1κ= +  and ( )2/94 /100q n⎡ ⎤= ⎣ ⎦  as in Marcucci (2005).  

Diebold and Mariano (1995) proposed also the sign test which is an exact finite-sample EPA 

test. It differs from the EPA test as the null hypothesis is that of a zero median function loss 

differential: ( ) ( )0 , ,: med med 0i t j t tH l l d− = =  against the alternative of a negative median, 
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where negative values for  indicate superiority of model i  over model j.td 13 This is equivalent to 

testing whether the respective loss function value for model i is less than that of model j in most 

of the n days of the forecasting period. The null hypothesis is tested via the sign statistic, which 

is actually the number of non-negative d’s. This is defined as 
1

T
ij tt

S ψ
=

=∑ , where tψ  takes the 

value of one if  and zero otherwise. Under the null, the sign statistic is binomially 

distributed with parameters ( , but for large samples it is asymptotically normally 

distributed implying that the standardized version of the test statistic, 

0td ≥

),0.5T

( )ˆ
ijS S 0.5 0.25ij T= −

)

T , 

is distributed as . The null hypothesis for a 5% significance level is rejected for values of 

, suggesting the superiority of model  over model 

(0,1N

ˆ 1.645ijS < − i j . 

MThe predictive ability of the VaR models in terms of the tRC FL

, ,t k t

and the   is also assessed 

via Hansen’s (2005) Superior Predictive Ability (SPA) test. The SPA test examines whether the 

null hypothesis that the benchmark model is not outperformed by any of its competitors is 

rejected or not. Thus, it is much more straightforward to come to a generic conclusion for the 

models tested. The forecasting performance of the benchmark model, model , with respect to 

model  is deduced from the loss function differential:

tF

0

, 0t kf l l= −k , where  is the total 

number of competing counterparts. Under the null hypothesis and assuming stationarity for 

1...k = j

,t kf , 

we expect that on average the forecasting loss function of the benchmark model will be smaller, 

or at least equal to that of model k . Thus, the null hypothesis can be stated as: 

 and is tested through the following test statistic: ( ) k =0 1...
:  max  

k l
H μ

= , ≤ 0t kE f 

 

( )var
k

k

n f

n f1...
  maxSPA

n k l
T

=
=  (54) 

 

where ( ) 1 ,1 / n
tk t kf n == ∑ f  and (var kn f )  is the variance of . Both ( )kn f var kn f

                                        

 and the test 

statistic p-values are consistently estimated via stationary bootstrapping as in Politis and Romano 

(1994).  
         

13 Note that ( ) ( ) ( ), , , ,med medi t j t i t j tl l l l− ≠ − .  med
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5. Empirical results 

5.1. The data set 

The data set was obtained from Tick Data and consists of five minutes previous tick 

interpolated prices for the S&P 500 cash index14 over an approximately thirteen year period, 

from 1.1.1997 to 09.30.2009. After adjustments for holidays and half-holidays, there were 

 trading days, with six and a half trading hours per day, interpreted as  intraday 

returns. The five minutes intraday sampling frequency used for the computation of the realized 

volatility and realized power variation has been found to be the highest sampling frequency with 

acceptable market microstructure bias, especially for liquid assets like the S&P 500 index (see 

Andersen et al., 2001a; Koopman et al., 2005; Corsi et al., 2008 and Degiannakis, 2008).  

3,196T = 78=M

The descriptive statistics for the daily returns, the realized volatility and the logarithmic 

realized variance are presented in Table 2. The return series exhibits negative skewness and fat 

tails, a departure from normality which can be attributed to mainly negative price shocks near the 

end of 1997 and 1998, all through 2000, towards the end of 2002 and obviously during the 2007 

– 2009 financial turmoil. The skewness and kurtosis of the logarithmic variance series suggest 

that the respective distribution is approximately normal.  

 

[Insert Table 2 about here] 

 

5.2. VaR forecasting methodology and evaluation results 

In this study, we evaluate the day ahead VaR forecasting performance of the following 

volatility models: (i) ARCH – type models: EWMA, GARCH, GJR, EGARCH, APARCH and 

FIGARCH, (ii) realized volatility models: ARFIMA, ARMA, HAR-RV, HAR-RPV, HAR-RV-

GARCH and AHAR-RPV-GARCH and (iii) Augmented GARCH models: GARCH-RV and 

GARCH-RPV. For each of the fourteen (14) volatility models, the thα  quantile of the  process 

is estimated with all three aforementioned methods: the fully parametric method utilizing either 

the normal or the skewed student distributions, the FHS method and the EVT-POT method. 

tz

                                                 
14 In this paper we assume a long position on the index. 
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Hence, we implement in total fifty six (56) distinct VaR models for four different VaR coverage 

levels: 10%, 5%, 1% and 0.5%.15  

The full data set was divided into  in-sample observations and  

out-of-sample observations, from 12.20.2000 to 09.30.2009. Moreover, towards the end of our 

analysis we concentrate explicitly on the 2007 – 2009 period in order to evaluate the VaR 

models’ forecasting performance during the recent financial crisis. 

1, 250T ∗ = * 1,946n T T= − =

The day ahead out-of-sample VaR forecasts were obtained using a rolling window of 

approximately five years, or 1,250 trading days. Hence, the 1T ∗ +  day VaR forecast was 

estimated using the complete in-sample data set, the 2T ∗ +  day VaR forecast was estimated 

using observations { }2,..., 1T ∗ +  and so on. For each iteration, all the realized volatility and 

ARCH-type models parameters, the conditional realized volatilities, the conditional mean 

parameters, the scaling parameter  and the quantile estimation as described in Section 3 were 

re-estimated anew. To our knowledge, this is the first time the two step procedure is 

implemented for realized volatility models with a rolling window forecasting methodology.  

g

 

5.2.1. Failure Rates 

The failure rates for the 10%, 5%, 1% and 0.5% quantiles for each of the fifty six VaR 

models are presented in Table 3 along with the respective models’ rankings. The model rankings 

are deduced with respect to the minimization of the distance between the observed failure rate 

and the prespecified coverage level, i.e. the model ranking first has its observed failure rate 

closest to the required coverage level. Overall, the realized volatility and the augmented GARCH 

models failure rates are closest to the required coverage level.  

A closer examination of the results reveals that the augmented GARCH models yield the 

smallest distance from the benchmark 0.5% quantile for the normal distribution and for the 1% 

and 0.5% quantiles for the FHS method, while the AHAR-RPV-GARCH model ranks 

consistently first for the skewed student distribution. In total, the realized volatility models rank 

first nine times (five of which are attributed to the AHAR-RPV-GARCH model), followed by 

                                                 
15 For the EVT method the 10% VaR was not calculated as the threshold U  deduced with the mean excess and Hill 
plot methods results in a value for  for which UT ( )/ 1U zT T F U= −  is smaller than the 10% coverage level. 
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the augmented GARCH models which rank first seven times, while the alternative VaR models 

take the top ranking three times altogether.  

The worst16 10% quantile performances for nearly all VaR models are noted for the FHS 

method where excessive VaR provisions are suggested, while the worst 5%, 1% and 0.5% 

quantile results are observed for the normal distribution, as expected. A final interesting note is 

that the VaR estimates subscription to the target coverage level tends to improve for lower 

quantiles. 

 

[Insert Table 3 about here] 

 

5.2.2. Unconditional and Conditional coverage test 

Christoffersen’s unconditional and conditional coverage tests results are presented in Tables 

4 and 5 respectively, where the bold faced fonts indicate rejection of the respective null 

hypothesis at a 5% significance level. With the normal distribution, almost all of the VaR models 

fail to produce the correct unconditional and conditional coverage for the 1% and 0.5% quantiles. 

The only exceptions are the augmented GARCH models for the 0.5% quantile where the null 

hypothesis of correct unconditional and conditional coverage cannot be rejected and also the 

HAR-RV-GARCH model for the conditional coverage test. These results adhere to the 

aforementioned inappropriateness of the normal distribution to accurately represent actual asset 

returns, especially when low coverage levels are required. For higher coverage levels, i.e. for 

10% and 5%, all models par the EWMA exhibit correct unconditional and conditional coverage. 

When the skewed student distribution, or the FHS and the EVT methods are used, the 

conditional and unconditional coverage of the VaR estimates is significantly improved. The 

rejections of the null hypothesis are mainly concentrated in the unconditional coverage test and 

the skewed student distribution for the EWMA model for the 10% and 5% quantiles, for the 

GARCH-RV model for the 5% and 1% quantiles and for the GARCH-RPV for the 1% quantile. 

The Augmented GARCH models results were anticipated, since when they are combined with 

the skewed student distribution they tend to overestimate VaR producing very few exceptions 

                                                 
16 Measured as the average deviation of the observed FR with respect to the prescribed quantile. 
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(see Table 3). Interestingly, the EGARCH null hypothesis of correct unconditional coverage is 

always rejected for the 1% quantile, irrespective of the VaR distribution estimation method. 

These results confirm that the key driver for correct (un)conditional coverage of the VaR 

forecasts is the innovations’ distributional assumption. This conclusion is consistent with the 

findings of other authors e.g. Giot and Laurent (2004), Giot (2005) and Ferreira and Lopez 

(2005). Nonetheless, the value of the informational content in intraday data should not be 

dismissed as the models relying on high frequency data tend to produce the highest p-values 

across all VaR methods and quantiles.  

 

[Insert Table 4 about here] 

[Insert Table 5 about here] 

 

5.2.3. Dynamic Quantile test 

Table 6 reports the Engle and Manganelli (2004) Dynamic Quantile test results. The 5% and 

10% quantile results are qualitative similar to those in Table 5 for the conditional coverage test, 

as the null hypothesis of correct VaR estimates cannot be rejected at a 5% significance level for 

all models, irrespective of the distributional assumption. The 1% and 0.5% quantile results for 

the normal distribution also align with the respective conditional coverage outcomes. However, 

the picture is somewhat different with the skewed student distribution, the FHS and the EVT 

methods results for the 1% and 0.5% quantiles. For the 1% quantile, the skewed student EWMA 

and EGARCH VaR estimates and all the ARCH-type models estimates when combined with the 

FHS and EVT methods reject the null hypothesis. For the 0.5% quantile, the null hypothesis is 

rejected for the EGARCH and the APARCH models when combined with the skewed student 

distribution or the EVT method and similarly for the GARCH, EGARCH and FIGARCH models 

with the FHS method. However, all realized volatility and augmented GARCH models with the 

exception of the ARFIMA-FHS, do not reject the null hypothesis of correct VaR estimates for 

the 1% and 0.5% quantiles. These findings suggest that for low quantiles, the use of intraday data 

can help improve the statistical accuracy of the VaR forecasts, as this is evaluated by the DQ 

test. 
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[Insert Table 6 about here] 

 

5.2.4. Quadratic Loss Function 

Tables 7 and 8 summarize the Average QLF17 (AQLF) and the QLF divided by the number 

of exceptions results respectively. The realized volatility and the augmented GARCH models 

almost invariably minimize both QLF metrics and rank in the first places irrespective of the VaR 

method or quantile. In particular, the GARCH-R(P)V and the ARMA models generate the 

smallest exceptions across all VaR methods and quantiles as they are nearly always in the top 

rankings for both metrics. On the contrary, the ARCH models usually rank in the last places with 

the only exceptions being the EWMA-EVT for the AQLF 5% quantile and the FIGARCH-skst 

1% quantile for the QLF relative to the number of exceptions metric. Hence, even when 

accounting for the magnitude of the exceptions and not only for their number, it is clear that 

models utilizing the informational content of intraday returns provide the most accurate VaR 

estimates. 

 

[Insert Table 7 about here] 

[Insert Table 8 about here] 

 

5.2.5. Mean Relative Scaled Bias 

The VaR estimates’ relative efficiency as measured by the MRSB metric are presented in 

Table 9. According to the MRSB values, the augmented GARCH models followed by the 

realized volatility models clearly outperform the ARCH-type models across all VaR methods and 

quantiles. Once the VaR estimates are appropriately scaled to obtain the prespecified frequency 

of exceptions, the high frequency data models typically produce the lowest average risk estimate 

which in terms of efficiency amounts to reduced reserved regulatory capital requirements (see 

also the next section) and improved resource allocation signalling.  

 

[Insert Table 9 about here] 

                                                 
17 In order to facilitate the reviewing of the results, all Average QLF values have been multipied by 100. 
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5.2.6. Regulatory loss Function 

Table 10 shows the percentage of days that the 1% VaR out-of-sample estimates merit a 

green, yellow, or red light according to the Basel committee traffic light system. The average 

capital reserved for regulatory purposes and its respective standard deviation are also presented. 

The bold faced typing indicates that a model has been assigned a red light for at least one day 

and/or has failed one or all of the (un)conditional coverage and dynamic quantile tests.  

All models relying on the normal distribution fail to pass Basel’s traffic light test, 

highlighting the inappropriateness of the normal distribution when regulatory compliance is 

required. It is worth noting however that the realized volatility and the augmented GARCH 

models minimize the red light days. When the volatility models are combined with the 

asymmetric and fat tailed skewed student distribution, no red light days are recorded except for 

the EGARCH and the GJR models. The stand-out result in that column is the GARCH-RV 

model which has 100% of the days in the green zone, the single such occurrence in our tests and 

an outstanding performance considering that the out-of-sample period includes two periods of 

financial stress (2000-2002 and 2007-2009). The GARCH-RPV model also merits a yellow light 

for only 3% of the out-of-sample days which is an excellent result as well. However both have 

previously failed the correct unconditional coverage test for the 1% VaR coverage level.   

When the FHS method is used, all ARCH-type models register a limited number of red light 

days except from the EWMA and FIGARCH models which record no red light days but are 

nonetheless rejected since they have previously failed the dynamic quantile test. However, when 

the GARCH specification is augmented with the R(P)V regressors, no red light days are 

observed whilst registering some of the higher overall percentages of green light days. Among 

the realized volatility models, only the HAR-RV-GARCH and the Asymmetric HAR-RPV-

GARCH models satisfy the regulators loss function and register no red light days. It is also worth 

noting that after the normal distribution, the FHS method yields the most red and yellow light 

days. 

The majority of the VaR models when coupled with the EVT method produce acceptable 

VaR forecasts with respect to the supervisors’ requirements. Only the GARCH, EGARCH and 

GJR models violate at least once the threshold of the ten exceptions over the previous 250 
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trading days. Overall, the HAR-RV-GARCH and the Asymmetric HAR-RPV-GARCH models 

are the most consistent performers from a regulator’s point of view. They generate zero red light 

VaR estimates when used with the skewed student distribution, the FHS and EVT methods, 

whilst satisfying all the statistical accuracy conditions set herein. 

Turning to the regulatory reserved capital results, we note that irrespective of the thα  

quantile estimation method used, the GARCH-R(P)V models followed by the realized volatility 

models minimize the regulatory capital requirements and its volatility. This can be attributed to 

the fact that realized volatility is a consistent and less noisy estimator of the daily unobserved 

volatility than the squared daily returns used by the ARCH-type models. Thus, when used in a 

market risk management context, it can produce VaR estimates that track more closely the actual 

asset returns volatility dynamics. These results also align with the MRSB findings presented in 

Table 9 where the augmented GARCH models produced the lowest VaR estimates for the correct 

coverage level.  

 

[Insert Table 10 about here] 

 

Table 11 summarizes the Market Risk Capital (MRC) loss function EPA test results for the 

average of the loss differential, the median sign test results of the loss differential and the loss 

function SPA test results. The tests were run only for models passing both the statistical and 

regulatory accuracy tests, i.e. the (un)conditional coverage and DQ tests with zero red light days. 

From the fifty-six models examined here, only twenty-one models passed both kinds of tests and 

none of them used the normal distribution. Moreover, only three are ARCH–type models: the 

GARCH, the FIGARCH and the APARCH models when combined with the skewed student 

distribution.  

For the EPA test, we chose the AHAR-RPV-GARCH with the EVT method as the 

benchmark model since it passed both types of tests across all three quantile estimation methods, 

requiring also less overall reserved capital than the close competing HAR-RV-GARCH model. 

The first column of the table shows the percentage of days that the benchmark model requires 

less regulatory reserved capital than each one of its competitors. The results reveal that more 

than half of the days, the benchmark model demands less regulatory capital than that demanded 

by the alternative VaR specifications. The p-values of the average MRC loss function 
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differentials show that the null of equal performance cannot be rejected for four realized 

volatility models and the two augmented GARCH models with the EVT and the FHS methods. 

However, the median sign-test p-values confirm that the benchmark model outperformed its 

competitors as the null hypothesis of equal performance is always rejected. For the SPA test, 

each of the Table 11 models is alternatively used as the benchmark model and the null 

hypothesis that it is not outperformed by any of its counterparts is tested. The p-values give 

evidence in favor only for the augmented GARCH-RV-FHS and GARCH-RPV-FHS models.    

 

[Insert Table 11 about here] 

 

5.2.7. Firm Loss Function 

In Table 12 the Firm Loss Function (FLF) EPA test results for the average of the loss 

differential, the median sign test results of the loss differential and the loss function SPA test 

results are presented. The average FLF value is also shown in the first column. As before, only 

models satisfying both the statistical and regulatory tests are included. The GARCH-RPV-

FHS/EVT followed by the GARCH-RV-FHS/EVT models produce the lowest average FLF, 

while the AHAR-RPV-GARCH-EVT and then the HAR-RV-GARCH-FHS models are lagging 

closely behind. The AHAR-RPV-GARCH-EVT model is the EPA benchmark model as before 

and more often than not, less opportunity costs are incurred for its reserved regulatory capital 

than that of its alternatives. Nonetheless, the EPA test for the average loss differential gives also 

evidence in favour of the augmented GARCH models and the HAR-RV-GARCH-FHS model, in 

line with the FLF value findings. The median sign-test results are qualitative equivalent to the 

ones presented for the MRC in Table 11. The SPA test results also support the aforementioned 

findings as the null hypothesis cannot be rejected for the augmented GARCH-RPV model at a 

5% significance level. There is also evidence in favour of the AHAR-RPV-GARCH-EVT model 

for a 2% significance level. 

 

[Insert Table 12 about here] 
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5.2.8. Evaluating the models during the 2007-2009 period 

In order to explicitly evaluate the VaR models during a period of high market volatility, we 

repeated our analysis by setting the out-of-sample data range to span from 07.01.2007 to 

30.09.2009. During this turbulent period, the latest global financial crisis gradually unfolded with 

the highlight event probably being the collapse of Lehman Brothers on the 15th of September 

2008. We focused solely on the 1% VaR estimates as this quantile bears the greatest significance 

for practical applications. A synopsis of the statistical accuracy and efficiency evaluation 

measure results18 is presented in Tables 13 and 14. 

From Table 13 we note that the augmented GARCH models typically produce the most 

accurate empirical failure rates and the lowest Average QLF measures, followed by the realized 

volatility models. These are also the only two model classes that when combined with the 

skewed student distribution, or the EVT method, exhibit correct conditional and unconditional 

coverage and do not reject the null of the DQ test. The ARCH–type models performances in the 

(un)conditional and DQ tests deteriorate over the 2007-2009 period, as all of them fail either or 

both tests. The results for the FHS method are somewhat discouraging since the majority of the 

models fail the (un)conditional and DQ tests and eight out of fourteen models record red light 

days. Overall, the models that recorded red light days in the full out-of-sample period exhibit red 

light days in this sub-sample period as well, albeit to a greater extend. 

In total, only three models satisfy all of the conditions set herein across the three VaR 

quantile methods: the two augmented GARCH models and the AHAR-RPV-GARCH model. In 

particular, the augmented GARCH-RV model performs consistently very well across all methods 

and tests. However, the best overall VaR forecasting performance is shared between the closely 

competing augmented GARCH models and the HAR-RPV model, when they are combined with 

the skewed student distribution. 

 

[Insert Table 13 about here] 

 

In Table 14, the models satisfying both the statistical and regulatory tests for the period in 

question are compared with respect to their MRC and FLF performances as in Tables 11 and 12. 

                                                 
18 The results with the normal distribution are not presented as they have no material difference with those presented 
for the full sample. They are available from the authors upon request. 
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We note that all average MRC and the FLF values worsen during the financial crisis period, an 

outcome which was largely to be expected. The increased market volatility is reflected in the 

VaR estimates which in turn are translated into higher reserved capital (MRC) levels and hence 

higher opportunity costs (FLF). Overall, the augmented GARCH-RPV model when combined 

with the skewed student distribution and the EVT method produces the lowest overall MRC and 

FLF average values respectively. For comparison purposes, the benchmark model is again the 

AHAR-RPV-GARCH-EVT model, but this time alternative models demand less regulatory 

capital for most of the days. In particular, all augmented GARCH models almost invariably 

require less regulatory capital and most notably the GARCH-RPV-skst model always demands 

less capital. The EPA average MRC p-values indicate that the null hypothesis of equal 

performance cannot be rejected for all alternative models and the median sign-test p-values 

confirm that the benchmark model is outperformed by its competitors. The SPA p-values give 

evidence in favor only for the augmented GARCH-RV-skst model. Similar conclusions are 

drawn for the FLF results, but now, according to the SPA test p-values, the GARCH-RPV-EVT 

model outperforms its alternatives. 

 

[Insert Table 14 about here] 

 

6. Conclusions 

Our empirical analysis yielded several interesting conclusions. For the volatility models, the 

evidence was unequivocal: volatility models utilizing high frequency data, i.e. the realized 

volatility and the augmented GARCH models, almost invariably produced superior VaR 

forecasts in terms of statistical accuracy and regulatory capital efficiency, irrespective of the VaR 

quantile or its estimation method. The ARCH-type models, including the popular RiskMetricsTM 

model, typically finished last in the statistical accuracy tests, while their performance usually 

deteriorated further for the more demanding 1% and 0.5% VaR quantiles. Would they have 

passed the 1% statistical accuracy conditions, they would have produced the most red light days 

and recorded the highest regulatory capital demands, whilst incurring the highest opportunity 

costs. Their performance in periods of high volatility confirmed and amplified the 

aforementioned observations. Although it is difficult to distinguish any one volatility model, we 
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were particularly impressed with the performance of the augmented GARCH models, the 

Asymmetric HAR-RPV-GARCH and the HAR-RV-GARCH models. Based on the evidence 

collected here, in a practical application we would like to see these models partnered either with 

the FHS, or the EVT quantile estimation methods. In periods of high volatility we would also 

consider switching to the fully parametric method with the skewed student distribution. 

The skewed student distribution helped achieve robust statistical accuracy results during the 

full sample period and better than those produced with the alternative quantile methods during 

the recent financial crisis. On average, it led to higher regulatory capital requirements, thus 

minimizing the red light days, however during periods of high volatility it yielded more 

conservative regulatory demands than the alternative methods. The FHS and the EVT methods 

also proved to be powerful VaR quantile estimators. We noted however a relative weakness of 

the FHS method with respect to the statistical accuracy conditions during highly volatile periods. 

It is also worth highlighting the solid performance of the EVT method in terms of the regulatory 

criteria, i.e. the small number of red light days with respect to the reserved regulatory capital 

levels (the lowest in the full sample) and consequently the low opportunity costs. Periods of high 

volatility extended significantly the regulatory capital provisions for both methods. We also 

confirmed previously published evidence that the normal distribution is a poor choice for the 

innovations distribution. 

The results presented here should also be of interest to regulatory authorities and financial 

institutions. For financial institutions, apart from improving their confidence in their VaR 

forecasts which is beneficial for themselves and their clients, they could also improve their 

regulatory compliance profile, manage their regulatory reserves more effectively and even free 

tied up capital towards more productive and rewarding uses. From a regulator’s point of view, 

enhancing the accuracy of risk management models could help mitigate systemic risks in periods 

of extraordinary market volatility and contribute towards the overall stability of the financial 

system. Off-course, practical issues, e.g. the availability of high frequency data for a broad range 

of assets classes, storage and the real-time processing requirements, will have to be addressed 

before deploying these VaR models to cover all the activities of a financial institution. 

We have no reason to doubt that similar VaR forecasting results can also be realized for other 

liquid stock indices. However, further investigation is necessary into the VaR forecasting 

performance of the high frequency volatility models examined here for other asset classes such 
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as futures, bonds, currencies and commodities. Finally, alternative realized volatility models 

such as the Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006; Brownless 

and Gallo, 2009) and the recently proposed High-frEquency-bAsed VolatilitY (HEAVY) models 

(Shephard and Sheppard, 2010) could also be evaluated in combination with the FHS and the 

EVT quantile estimation methods.    
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Table 1 Literature review: Value at Risk and realized volatility 
Author(s) Methodology and VaR evaluation Data set Main conclusions 

Giot and 
Laurent 
(2004) 

The RiskMetrics and the skewed student APARCH model 
are compared with a realized volatility (RV) ARFIMAX-RV 
model combined with a normal and a skewed student 
distribution. A two step approach was used to relate the RV 
dynamics with the returns process. Evaluation: Kupiec’s 
(1995) test and the Dynamic Quantile (DQ) test of  
Manganelli and Engle (2004).   

CAC 40 (1995-
1999), SP 500 
futures (1989-
2000), 
YEN/USD and 
DEM /USD 
(1989-2001) 

The RV model did 
not improve the 
daily VaR 
forecasting 
performance of the 
APARCH-skst 
model. 

Beltratti 
and 
Morana 
(2005) 

An ARFIMA-RV model, an ARFIMA model with a 
FIGARCH specification for the heteroskedastic errors and a 
GARCH model were used to generate multi-step VaR 
forecasts.Evaluation: Christoffersen’s (1998) (un)conditional 
coverage test and Berkowitz (2001) density forecast tests. 

YEN and DEM 
against USD 
(1986-1999) 

The RV ARFIMA-
FIGARCH model 
provided superior 
VaR forecasts. 

Kruse 
(2006) 

GARCH type, RV and stochastic volatility models were used 
to forecast VaR based on the Normal, GED, skst errors 
distributions, the Filtered Historical Simulation (FHS) and 
the EVT methods. Evaluation: (un)conditional coverage tests 
and the Firm Loss Function (FLF) (Sarma et al., 2003).    

SP 500 futures 
index 

(the time period 
is not reported) 

The RiskMetrics 
and the GARCH 
models were not 
outperformed by 
any other model.  

Grané and 
Veiga 
(2007) 

GARCH, EGARCH and GJR-GARCH were augmented with 
realized volatility as an explanatory variable. Evaluation: the 
Minimum Capital Risk Requirements (MCRR). 

American 
Express, Coca-
Cola, Walt 
Disney, Pfizer 
(1997-2007)  

RV enhanced the 
capacity of the 
models to calculate 
accurate MCRR. 

Angelidis 
and 
Degiannak
is (2008) 

A normal TARCH, a FIAPARCH-skst model and an 
ARFIMAX-RV model combined with a skst distribution (as 
in Giot and Laurent (2004)) were used to forecast daily VaR. 
Evaluation: (un)conditional coverage tests. 

CAC 40, DAX 
30 (1995-2003), 
FTSE 100 (1998-
2003). 

The TARCH 
model was the 
overall best 
performing model.  

Clements 
et al. 
(2008) 

The authors used AR(5), MIDAS regressions and HAR 
models combined with normal, t-student (8 degrees of 
freedom) and the FHS method. Evaluation: A ‘tick’ or check 
function assessed with the Diebold and Mariano (1995) test. 

AUD, CAD, 
EUR, GBP, YEN 
vs USD rates 
(1999-2003) 

The HAR model 
provided superior 
forecasts for 
currencies with 
volatility shifts. 

McMillan 
et al. 
(2008) 

Intraday GARCH, Component GARCH and EGARCH 
models were compared with their daily counterparts and RV 
models (AR-structure) in volatility and VaR forecasting. 
Evaluation: Kupiec’s (1995) and the DQ tests. 

EUR against 
USD, GBP and 
YEN (2002-
2003)   

Intraday models 
provided improved 
performance wrt 
daily & RV models 

Brownless 
and Gallo 
(2009) 

RV, bipower RV, two scales RV, realized kernel as well as 
the daily range are modeled with a P-Spline Multiplicative 
Error Model. A t-student GARCH was also used. 
Evaluation: (un)conditional coverage tests, the DQ test and 
the probability deviation loss functions (Kuester et al., 
2006). 

3 NYSE stocks: 
Boeing, General 
Electric, Johnson 
and Johnson 
(2001-2006) 

RV measures 
improved the VaR 
forecasts with 
respect to the 
GARCH model, 
but not so relative 
to the range. 

Martens et 
al. (2009) 

An AR(22), an ARFI, a HAR and a GJR-GARCH model 
were extended to incorporate level shifts, leverage effects, 
day-of the week seasonality and the effect of the 
macroeconomic announcements. Evaluation: (un)conditional 
coverage tests, the Quadratic Loss Function (QLF) (Lopez, 
1999) and the Basel II Capital Requirements (CR). 

SP 500 futures 
index (1994-
2006)  

 

All models failed 
the coverage tests. 
The RV models 
produce less 
volatile CRs and 
minimize the QLF.  

Shao et al. 
(2009) 

The Realized Range (RR) modelled with a Conditional 
Autoregressive Range (CARR) model (Chou, 2005) and 
combined with the skst distribution as in Giot and Laurent 
(2004). An ARFIMA-RV model, the RiskMetrics, t-student 
GARCH and the APARCH-skst models were also used. 
Evaluation: Kupiec’s (1995) and the DQ test. 

Shanghai 
Composite and  
Shenzhen 
Component 
Index (2005-
2007)  

The RV and RR 
models had similar 
performance and 
outperformed the 
daily ARCH-type 
models. 
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Table 2 Descriptive statistics for the S&P 500 cash index (01.01.1997-09.30.2009) 
 r RV ln(RV) 
 Mean 0.01 1.36 -0.30 
 Median 0.06 0.71 -0.34 
 Maximum 10.71 76.80 4.34 
 Minimum -9.79 0.05 -2.91 
 Std. Dev. 1.34 2.77 0.99 
 Skewness -0.09 10.85 0.55 
 Kurtosis 9.75 210.62 3.66 
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Table 3 Failure rates (in percentage points) 
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5%
EWMA 11.51 14 6.27 14 1.95 13 1.13 11 11.97 14 6.12 14 1.28 11 0.57 4 9.82 1 5.24 11 1.18 4 0.72 11   4.73 9 1.13 8 0.31 12

GARCH 10.48 13 5.70 12 2.16 14 0.98 4 10.79 12 5.34 9 0.92 2 0.46 1 9.40 8 5.19 7 1.28 10 0.77 13   4.62 12 1.18 10 0.46 2 

FIGARCH 10.38 11 5.70 12 1.90 12 1.08 10 10.84 13 5.60 11 1.13 6 0.41 6 9.71 2 5.24 11 1.18 4 0.57 1   5.24 8 1.08 7 0.41 9 

EGARCH 10.12 4 5.60 11 1.75 7 1.03 7 10.69 11 5.76 12 1.49 14 0.77 14 10.53 6 5.45 14 1.75 14 0.77 13   5.70 14 1.49 14 0.77 14

APARCH 9.61 12 5.45 8 1.80 10 1.13 11 9.76 7 5.09 3 1.08 4 0.57 4 9.15 14 5.19 7 1.39 12 0.62 4   5.19 6 1.18 10 0.57 7 

GJR 9.92 2 5.34 5 1.75 7 1.13 11 10.33 9 5.04 2 1.13 6 0.46 1 9.51 5 5.19 7 1.44 13 0.67 8   5.29 10 1.28 13 0.51 1 

ARMA-RV 9.66 7 5.14 2 1.80 10 1.13 11 9.82 5 4.88 4 0.82 8 0.41 6 9.30 10 4.93 4 1.23 8 0.62 4   4.78 7 0.98 1 0.41 9 

ARFIMA-RV 9.82 5 5.55 10 1.59 1 0.98 4 9.82 5 4.88 4 0.82 8 0.31 12 9.40 8 5.40 13 1.18 4 0.72 11   5.34 11 0.92 3 0.46 2 

HAR-RV 9.66 7 5.29 4 1.70 4 0.98 4 9.87 2 4.88 4 0.87 5 0.41 6 9.25 11 5.04 3 1.28 10 0.62 4   5.09 3 0.92 3 0.46 2 

HAR-RPV 9.66 7 5.40 6 1.70 4 1.03 7 9.87 2 4.88 4 0.72 10 0.41 6 9.25 11 4.98 1 1.13 3 0.62 4   5.04 1 0.92 3 0.46 2 

HAR-RV-G 9.66 7 5.50 9 1.64 2 0.92 3 9.87 2 4.83 8 0.92 2 0.41 6 9.25 11 4.98 1 1.23 8 0.67 8   5.14 5 0.82 9 0.46 2 

AHAR-RPV-G 9.97 1 5.40 6 1.75 7 1.03 7 9.92 1 4.98 1 0.98 1 0.46 1 9.56 4 5.19 7 1.18 4 0.67 8   5.40 13 1.23 12 0.57 7 

GARCH-RV 9.76 6 5.04 1 1.64 2 0.72 1 9.35 10 4.06 13 0.51 12 0.26 13 9.46 7 4.88 5 0.87 2 0.57 1   4.93 2 0.92 3 0.36 11

GARCH-RPV 9.92 2 5.19 3 1.70 4 0.72 1  9.76 7 4.42 10 0.51 12 0.36 11   9.61 3 5.14 6 1.03 1 0.57 1      5.09 3 0.98 0.26 131 

This table presents the observed failure rates for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage level. The relative performance 
ranking of each VaR model is shown in italics. The bold faced fonts denote the model ranking first. The HAR-RV-G and the AHAR-RPV-G are the 
HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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Table 4 Unconditional coverage test (p-values) 
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 
EWMA 0.03 14 0.01 14 0.00 13 0.00 11 0.00 14 0.03 14 0.23 10 0.69 4 0.79 1 0.63 11 0.43 4 0.20 11   0.58 9 0.57 8 0.20 12

GARCH 0.48 13 0.16 12 0.00 14 0.01 4 0.25 12 0.49 9 0.74 2 0.81 1 0.38 8 0.70 7 0.23 10 0.12 13   0.44 12 0.43 9 0.81 2 

FIGARCH 0.58 11 0.16 12 0.00 12 0.00 10 0.22 13 0.23 10 0.57 5 0.57 6 0.67 2 0.63 11 0.43 4 0.69 1   0.63 8 0.73 7 0.57 9 

EGARCH 0.86 4 0.23 11 0.00 7 0.00 7 0.32 11 0.14 12 0.04 12 0.12 13 0.44 6 0.37 14 0.00 14 0.12 13   0.16 14 0.04 14 0.12 13

APARCH 0.56 12 0.37 8 0.00 10 0.00 11 0.73 7 0.86 3 0.73 4 0.69 4 0.20 14 0.70 7 0.10 12 0.48 4   0.70 6 0.43 9 0.69 7 

GJR 0.90 2 0.49 5 0.00 7 0.00 11 0.63 9 0.94 2 0.57 5 0.81 1 0.46 5 0.70 7 0.07 13 0.32 8   0.56 10 0.23 13 0.93 1 

ARMA-RV 0.62 7 0.78 2 0.00 10 0.00 11 0.79 5 0.81 4 0.42 8 0.57 6 0.30 10 0.89 4 0.32 8 0.48 4   0.65 7 0.92 1 0.57 9 

ARFIMA-RV 0.79 5 0.27 10 0.02 1 0.01 4 0.79 5 0.81 4 0.42 8 0.20 12 0.38 8 0.43 13 0.43 4 0.20 11   0.49 11 0.74 3 0.81 2 

HAR-RV 0.62 7 0.56 4 0.01 4 0.01 4 0.84 2 0.81 4 0.57 7 0.57 6 0.26 11 0.94 3 0.23 10 0.48 4   0.86 3 0.74 3 0.81 2 

HAR-RPV 0.62 7 0.43 6 0.01 4 0.00 7 0.84 2 0.81 4 0.19 11 0.57 6 0.26 11 0.98 1 0.57 2 0.48 4   0.94 1 0.74 3 0.81 2 

HAR-RV-G 0.62 7 0.32 9 0.01 2 0.02 3 0.84 2 0.73 8 0.74 2 0.57 6 0.26 11 0.98 1 0.32 8 0.32 8   0.78 5 0.42 11 0.81 2 

AHAR-RPV-G 0.96 1 0.43 6 0.00 7 0.00 7 0.90 1 0.98 1 0.92 1 0.81 1 0.51 4 0.70 7 0.43 4 0.32 8   0.43 13 0.32 12 0.69 7 

GARCH-RV 0.73 6 0.94 1 0.01 2 0.20 1 0.34 10 0.05 13 0.02 13 0.09 14 0.42 7 0.81 5 0.57 3 0.69 1   0.89 2 0.74 3 0.36 11

GARCH-RPV 0.90 2 0.70 3 0.01 4 0.20 1  0.73 7 0.23 11 0.02 13 0.36 11  0.56 3 0.78 6 0.90 1 0.69 1      0.86 3 0.92 0.091 14

This table presents the p-values for the unconditional coverage test for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR 
coverage level. The relative performance ranking of each VaR model is shown in italics and is based on the respective p-values. The bold 
faced fonts denote rejection of the null hypothesis of correct unconditional coverage at a 5% significance level. The HAR-RV-G and the 
AHAR-RPV-G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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Table 5 Conditional Coverage test (p-values) 
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 
EWMA 0.08 14 0.04 14 0.00 13 0.00 11 0.01 14 0.09 13 0.30 11 0.87 4 0.59 4 0.63 11 0.40 9 0.26 11   0.63 10 0.44 11 0.43 12

GARCH 0.66 11 0.36 11 0.00 14 0.03 4 0.42 11 0.46 9 0.80 2 0.93 1 0.68 6 0.88 7 0.35 10 0.26 13   0.50 11 0.56 8 0.93 2 

FIGARCH 0.83 8 0.36 11 0.00 12 0.01 10 0.46 10 0.08 14 0.66 6 0.82 6 0.91 11 0.85 11 0.56 4 0.87 1   0.68 9 0.75 6 0.82 9 

EGARCH 0.19 13 0.31 13 0.01 7 0.01 7 0.04 13 0.32 11 0.08 12 0.26 13 0.07 13 0.48 14 0.01 14 0.26 13   0.32 14 0.08 14 0.26 13

APARCH 0.74 9 0.67 4 0.00 10 0.00 11 0.93 6 0.89 6 0.75 4 0.87 4 0.42 12 0.88 7 0.18 12 0.72 4   0.50 12 0.56 8 0.87 7 

GJR 0.71 10 0.60 6 0.01 7 0.00 11 0.88 7 0.62 8 0.66 6 0.93 1 0.48 14 0.92 7 0.13 13 0.56 8   0.41 13 0.35 13 0.95 1 

ARMA-RV 0.88 4 0.83 2 0.00 10 0.00 11 0.95 4 0.92 2 0.63 8 0.82 6 0.57 3 0.93 4 0.45 7 0.72 4   0.88 4 0.82 1 0.82 9 

ARFIMA-RV 0.95 2 0.55 7 0.03 1 0.03 4 0.95 4 0.96 1 0.63 8 0.43 12 0.66 7 0.72 13 0.56 4 0.39 11   0.77 7 0.80 3 0.93 2 

HAR-RV 0.84 5 0.67 5 0.01 5 0.03 4 0.95 1 0.92 2 0.73 5 0.82 6 0.48 8 0.90 3 0.35 10 0.72 4   0.87 5 0.80 3 0.93 2 

HAR-RPV 0.84 5 0.54 8 0.01 5 0.01 7 0.95 1 0.92 2 0.38 10 0.82 6 0.48 9 0.92 1 0.66 3 0.72 4   0.90 3 0.80 3 0.93 2 

HAR-RV-G 0.84 5 0.42 10 0.02 3 0.05 3 0.95 1 0.91 5 0.80 2 0.82 6 0.48 5 0.92 1 0.45 7 0.56 8   0.83 6 0.63 7 0.93 2 

AHAR-RPV-G 0.37 12 0.54 8 0.01 7 0.01 7 0.40 12 0.64 7 0.82 1 0.93 1 0.23 10 0.78 7 0.56 4 0.56 8   0.70 8 0.45 10 0.87 7 

GARCH-RV 0.93 3 0.90 1 0.03 2 0.39 1 0.61 9 0.13 12 0.06 13 0.24 14 0.72 1 0.92 5 0.73 2 0.87 1   0.93 2 0.35 12 0.64 11

GARCH-RPV 0.97 1 0.78 3 0.02 4 0.39 1  0.78 8 0.40 10 0.06 13 0.64 11  0.82 2 0.96 6 0.81 1 0.87 1      0.98 1 0.82 0.241 14

This table presents the p-values for the conditional coverage test for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage 
level. The relative performance ranking of each VaR model is shown in italics and is based on the respective p-values. The bold faced fonts 
indicate rejection of the null hypothesis of correct conditional coverage at a 5% significance level. The HAR-RV-G and the AHAR-RPV-G 
are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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Table 6 Dynamic quantile test (p-values) 
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 
EWMA 0.36 12 0.13 14 0.00 12 0.00 13 0.10 14 0.29 11 0.00 13 0.97 9 0.70 9 0.65 4 0.00 12 0.60 10   0.42 8 0.00 13 0.91 12

GARCH 0.59 10 0.13 13 0.00 14 0.00 8 0.45 11 0.13 14 0.36 12 1.00 3 0.76 8 0.32 14 0.02 8 0.00 13   0.06 14 0.02 10 1.00 1 

FIGARCH 0.73 7 0.63 3 0.00 13 0.00 14 0.48 10 0.21 13 0.40 10 0.87 12 0.80 7 0.60 6 0.02 10 0.02 12   0.58 3 0.01 12 0.89 12

EGARCH 0.33 13 0.30 9 0.00 11 0.00 9 0.31 13 0.40 10 0.00 14 0.02 14 0.31 13 0.61 5 0.00 14 0.00 14   0.35 13 0.00 14 0.00 14

APARCH 0.74 6 0.31 8 0.00 10 0.00 12 0.81 3 0.28 12 0.40 11 0.02 13 0.41 12 0.53 8 0.02 9 0.92 3   0.45 6 0.02 11 0.02 13

GJR 0.31 14 0.15 12 0.00 9 0.00 10 0.44 12 0.55 5 0.63 9 1.00 4 0.14 14 0.50 9 0.00 13 0.91 5   0.56 4 0.04 9 1.00 2 

ARMA-RV 0.92 1 0.69 2 0.00 8 0.00 10 0.87 2 0.55 3 0.96 4 1.00 2 0.92 4 0.66 3 0.55 6 0.92 4   0.44 7 0.47 7 0.96 7 

ARFIMA-RV 0.80 5 0.46 5 0.01 5 0.00 6 0.73 8 0.41 9 0.89 5 0.98 8 0.86 6 0.37 13 0.02 11 0.46 11   0.38 12 0.35 8 0.97 6 

HAR-RV 0.87 3 0.22 10 0.00 7 0.00 6 0.76 4 0.53 7 0.96 3 1.00 6 0.92 1 0.39 12 0.44 7 0.81 7   0.39 10 0.80 4 0.99 5 

HAR-RPV 0.87 4 0.37 7 0.00 6 0.00 5 0.75 6 0.53 8 0.87 6 1.00 5 0.92 2 0.44 11 0.56 5 0.82 6   0.39 11 0.80 3 0.99 4 

HAR-RV-G 0.90 2 0.19 11 0.01 4 0.21 3 0.69 9 0.55 4 0.99 1 0.99 7 0.92 3 0.45 10 0.79 3 0.75 9   0.40 9 0.86 2 0.99 3 

AHAR-RPV-G 0.70 8 0.41 6 0.03 2 0.00 4 0.74 7 0.57 2 0.98 2 1.00 1 0.64 11 0.59 7 0.79 4 0.79 8   0.52 5 0.74 5 0.94 9 

GARCH-RV 0.63 9 0.95 1 0.06 1 0.67 2 0.89 1 0.54 6 0.73 7 0.92 11 0.87 5 0.78 2 0.96 1 0.99 1   0.90 1 0.52 6 0.95 8 

GARCH-RPV 0.57 11 0.58 4 0.03 3 0.83 1  0.75 5 0.90 1 0.72 8 0.95 10  0.65 10 0.78 1 0.79 2 0.99 2      0.83 0.90 0.912 1 11

This table presents the p-values for the dynamic quantile test for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage 
level. The relative performance ranking of each VaR model is shown in italics and is based on the respective p-values. The bold faced fonts 
denote rejection of the null hypothesis of correct VaR estimates at a 5% significance level. The HAR-RV-G and the AHAR-RPV-G are the 
HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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Table 7 Average Quadratic Loss Function (AQLF)  
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5%
EWMA 21.60 13 10.81 13 2.85 11 1.69 11 22.85 14 10.36 14 1.83 13 0.89 13 17.92 7 8.41 7 1.65 5 1.03 10   7.38 1 1.55 9 0.58 12

GARCH 21.60 14 10.95 14 3.21 14 1.61 9 22.06 13 9.79 12 1.42 8 0.74 10 19.65 11 9.33 13 1.90 11 1.14 13   8.15 8 1.75 10 0.75 10

FIGARCH 20.74 12 10.45 12 2.77 10 1.58 8 21.69 12 9.68 11 1.54 10 0.70 8 19.94 12 9.24 11 1.62 4 0.87 4   8.94 12 1.51 8 0.67 5 

EGARCH 19.96 10 10.10 9 2.72 9 1.62 10 20.86 11 10.17 13 2.24 14 1.20 14 21.79 14 9.47 14 2.56 14 1.19 14   9.43 14 2.24 14 1.17 14

APARCH 19.69 9 10.21 10 2.89 12 1.78 12 19.41 9 8.97 9 1.65 11 0.87 12 19.00 10 8.77 10 2.10 12 0.96 7   8.72 10 1.81 12 0.88 12

GJR 20.52 11 10.43 11 2.98 13 1.85 13 20.82 10 9.35 10 1.74 12 0.79 11 20.09 13 9.33 12 2.21 13 1.10 12   9.20 13 2.03 13 0.89 13

ARMA-RV 17.32 1 8.15 2 2.37 4 1.85 13 17.62 3 7.54 3 1.16 4 0.60 4 16.43 1 7.69 2 1.68 8 0.87 3   7.48 2 1.31 3 0.63 4 

ARFIMA-RV 18.95 8 9.20 7 2.30 3 1.41 4 19.16 8 8.03 7 1.24 5 0.54 3 18.09 9 8.47 9 1.66 6 1.06 11   8.46 9 1.37 5 0.71 9 

HAR-RV 18.09 5 8.71 4 2.46 7 1.41 4 18.53 6 7.88 6 1.31 6 0.64 6 17.22 5 8.08 6 1.77 10 0.95 5   8.13 6 1.38 6 0.71 7 

HAR-RPV 18.05 4 8.81 5 2.45 6 1.49 6 18.49 5 7.88 5 1.12 3 0.64 7 17.21 4 8.04 5 1.61 3 0.95 6   8.08 5 1.38 7 0.71 8 

HAR-RV-G 17.95 2 8.84 6 2.38 5 1.37 3 18.37 4 7.78 4 1.36 7 0.64 5 17.01 3 8.00 4 1.71 9 0.98 8   8.13 7 1.26 2 0.70 6 

AHAR-RPV-G 18.76 6 9.29 8 2.62 8 1.56 7 18.79 7 8.39 8 1.49 9 0.73 9 18.09 8 8.43 8 1.68 7 1.00 9   8.82 11 1.77 11 0.85 11

GARCH-RV 18.02 3 8.15 1 2.15 1 1.02 1 15.59 1 5.98 1 0.75 1 0.42 1 16.94 2 7.42 1 1.19 1 0.80 1   7.49 3 1.26 1 0.56 2 

GARCH-RPV 18.81 7 8.61 3 2.24 2 1.04 2  17.22 2 6.74 2 0.79 2 0.53 2  17.66 6 7.85 3 1.36 2 0.82 2      0.467.86 1.334 4 1 

This table presents the Average QLF for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage level. The relative 
performance ranking of each VaR model is shown in italics. The bold faced fonts denote the model ranking first. The HAR-RV-G and the 
AHAR-RPV-G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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Table 8 Quadratic Loss Function relative to the number of exceptions  
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5%
EWMA 1.88 6 1.72 9 1.46 9 1.50 8 1.91 8 1.69 9 1.42 3 1.57 8 1.83 3 1.60 5 1.40 7 1.44 3   1.56 3 1.37 4 1.89 12

GARCH 2.06 13 1.92 13 1.49 10 1.65 14 2.04 14 1.83 13 1.54 13 1.59 10 2.08 13 1.80 14 1.48 12 1.49 7   1.76 14 1.48 8 1.62 10

FIGARCH 2.00 11 1.83 11 1.46 8 1.47 6 2.00 12 1.73 10 1.37 1 1.70 12 2.05 10 1.76 12 1.37 4 1.54 11   1.71 12 1.40 5 1.64 11

EGARCH 1.97 10 1.80 10 1.56 12 1.58 11 1.95 9 1.77 12 1.50 7 1.55 4 2.06 11 1.74 11 1.47 11 1.55 12   1.65 10 1.50 11 1.52 3 

APARCH 2.05 12 1.87 12 1.60 13 1.58 10 1.99 11 1.76 11 1.53 10 1.53 3 2.07 12 1.69 10 1.51 13 1.55 13   1.68 11 1.53 12 1.56 8 

GJR 2.07 14 1.95 14 1.71 14 1.63 12 2.02 13 1.86 14 1.54 11 1.70 13 2.11 14 1.80 13 1.53 14 1.65 14   1.74 13 1.58 14 1.72 12

ARMA 1.79 1 1.59 1 1.32 2 1.63 12 1.80 3 1.54 3 1.41 2 1.47 2 1.76 1 1.56 3 1.36 3 1.41 1   1.57 4 1.34 1 1.53 4 

ARFIMA 1.93 9 1.66 6 1.44 4 1.45 3 1.95 10 1.65 7 1.51 8 1.74 14 1.92 9 1.57 4 1.40 8 1.47 6   1.58 6 1.48 7 1.54 7 

HAR-RV 1.87 5 1.65 5 1.45 6 1.45 3 1.88 6 1.61 6 1.50 6 1.56 6 1.86 7 1.61 6 1.38 5 1.54 9   1.60 7 1.49 9 1.53 5 

HAR-RPV 1.87 4 1.63 4 1.45 5 1.45 5 1.87 5 1.61 5 1.55 14 1.56 7 1.85 6 1.61 8 1.42 10 1.54 10   1.60 8 1.49 10 1.54 6 

HAR-RV-G 1.86 3 1.61 2 1.45 7 1.48 7 1.86 4 1.61 4 1.47 5 1.55 5 1.83 5 1.61 7 1.39 6 1.47 5   1.58 5 1.54 13 1.52 2 

AHAR-RPV-G 1.88 7 1.72 8 1.50 11 1.52 9 1.89 7 1.68 8 1.52 9 1.58 9 1.89 8 1.62 9 1.42 9 1.50 8   1.63 9 1.43 6 1.50 1 

GARCH-RV 1.85 2 1.62 3 1.31 1 1.42 1 1.67 1 1.47 1 1.46 4 1.62 11 1.79 2 1.52 1 1.36 2 1.42 2   1.52 1 1.36 2 1.56 9 

GARCH-RPV 1.90 8 1.66 7 1.32 3 1.45 2  1.76 2 1.53 2 1.54 12 1.46 1  1.83 4 1.53 2 1.32 1 1.44 4    1.55 1.362 3   1.80 13

This table presents the QLF relative to the number of exceptions for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage 
level. The relative performance ranking of each VaR model is shown in italics. The bold faced fonts denote the model ranking first. The 
HAR-RV-G and the AHAR-RPV-G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for 
their residuals.  
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Table 9 Mean Relative Scaled Bias (MRSB)  
 Normal Skewed Student FHS EVT 
 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 10% 5% 1% 0.5% 
EWMA 0.239 13 0.253 14 0.235 10 0.238 9 0.236 14 0.248 13 0.226 10 0.217 9 0.241 14 0.241 13 0.240 12 0.227 8   0.245 12 0.255 14 0.226 12

GARCH 0.227 12 0.228 11 0.230 9 0.290 12 0.233 13 0.238 12 0.230 11 0.246 11 0.235 13 0.234 10 0.256 14 0.208 6   0.245 11 0.248 12 0.265 13

FIGARCH 0.218 10 0.242 13 0.259 13 0.295 13 0.210 7 0.249 14 0.243 12 0.263 12 0.226 11 0.251 14 0.232 10 0.235 9   0.255 14 0.249 13 0.270 14

EGARCH 0.246 14 0.227 10 0.240 11 0.233 8 0.227 11 0.237 11 0.295 14 0.275 13 0.227 12 0.240 12 0.250 13 0.263 14   0.238 10 0.236 11 0.261 12

APARCH 0.205 5 0.213 8 0.250 12 0.321 14 0.198 1 0.222 10 0.226 9 0.234 10 0.194 1 0.240 11 0.209 7 0.202 5   0.233 9 0.215 8 0.208 7 

GJR 0.222 11 0.232 12 0.264 14 0.256 10 0.230 12 0.221 9 0.263 13 0.276 14 0.224 10 0.225 9 0.233 11 0.199 4   0.249 13 0.220 9 0.253 11

ARMA 0.208 6 0.209 6 0.185 3 0.256 10 0.208 6 0.204 7 0.204 6 0.208 7 0.199 3 0.195 6 0.213 9 0.170 3   0.187 3 0.200 6 0.204 5 

ARFIMA 0.198 1 0.204 5 0.214 8 0.130 1 0.200 2 0.200 3 0.194 5 0.203 6 0.198 2 0.213 8 0.191 3 0.218 7   0.206 8 0.188 3 0.194 3 

HAR-RV 0.199 2 0.195 4 0.206 7 0.130 1 0.201 4 0.202 5 0.189 4 0.199 5 0.202 4 0.191 3 0.202 5 0.259 13   0.191 6 0.199 5 0.205 6 

HAR-RPV 0.202 3 0.193 3 0.205 6 0.176 6 0.200 3 0.201 4 0.206 7 0.188 3 0.203 5 0.189 1 0.201 4 0.257 12   0.187 4 0.200 7 0.234 9 

HAR-RV-G 0.204 4 0.212 7 0.199 5 0.165 5 0.204 5 0.203 6 0.187 3 0.195 4 0.210 7 0.191 4 0.211 8 0.243 11   0.190 5 0.195 4 0.200 4 

AHAR-RPV-G 0.208 7 0.217 9 0.198 4 0.201 7 0.211 8 0.207 8 0.209 8 0.214 8 0.205 6 0.208 7 0.209 6 0.237 10   0.206 7 0.236 10 0.240 10

GARCH-RV 0.213 9 0.184 1 0.162 2 0.163 4 0.224 10 0.180 1 0.170 2 0.121 1 0.215 8 0.189 2 0.173 1 0.140 1   0.185 2 0.176 1 0.122 2 

GARCH-RPV 0.210 8 0.190 2 0.151 1 0.144 3  0.219 9 0.187 2 0.160 1 0.162 2  0.222 9 0.192 5 0.180 2 0.141 2  0.182 0.119  0.182 2 1   1 

This table presents the Mean Relative Scaled Bias for the alternative VaR models for a 10%, 5%, 1% and 0.5% VaR coverage level. The relative 
performance ranking of each VaR model is shown in italics. The bold faced fonts denote the model ranking first. The HAR-RV-G and the AHAR-RPV-
G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.  
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Table 10 Regulatory Loss Function - Capital requirements  
 Normal Skewed Student FHS EVT 
 Green Yellow Red Mean St.dev Green Yellow Red Mean St.dev Green Yellow Red Mean St.dev Green Yellow Red Mean St.dev
EWMA 48.3 36.9 14.9 306 195 68.3 31.7 0.0 312 194 77.6 22.4 0.0 304 181 86.4 13.6 0.0 308 183 
GARCH 63.1 9.8 27.1 307 178 75.2 24.8 0.0 318 184 71.6 23.3 5.1 314 189 71.6 23.3 5.1 319 192 
FIGARCH 53.8 27.3 18.9 309 180 72.0 28.0 0.0 319 179 72.4 27.6 0.0 314 183 72.4 27.6 0.0 318 184 
EGARCH 58.3 28.3 13.4 311 179 59.7 35.2 5.1 316 180 50.8 42.3 6.9 312 189 56.7 40.1 3.2 301 163 
APARCH 63.1 13.2 23.6 304 179 70.4 29.6 0.0 318 180 63.7 34.4 1.9 303 183 65.8 34.2 0.0 303 178 
GJR 64.7 19.3 16.0 300 174 74.9 24.9 0.2 318 178 71.5 21.0 7.5 306 196 71.5 27.1 1.5 303 182 
ARMA 63.1 22.1 14.7 305 179 83.2 16.8 0.0 307 160 64.2 33.7 2.1 312 179 74.9 25.1 0.0 308 175 
ARFIMA 63.8 23.1 13.1 298 163 81.8 18.2 0.0 306 146 72.9 22.0 5.1 302 164 78.2 21.8 0.0 300 156 
HAR-RV 63.2 24.2 12.6 300 168 77.0 23.0 0.0 313 163 69.6 25.1 5.2 313 185 77.6 22.4 0.0 306 169 
HAR-RPV 63.2 24.2 12.6 300 168 82.4 17.6 0.0 314 156 74.6 21.0 4.3 308 176 77.6 22.4 0.0 306 169 
HAR-RV-G 63.1 31.6 5.2 298 165 68.9 31.1 0.0 319 175 66.9 33.1 0.0 312 182 82.3 17.7 0.0 300 164 
AHAR-RPV-G 62.5 29.0 8.5 299 169 71.5 28.5 0.0 312 164 75.1 24.9 0.0 306 174 68.1 31.9 0.0 304 173 
GARCH-RV 63.4 30.2 6.4 298 163 100.0 0.0 0.0 304 150 80.1 19.9 0.0 295 159 77.7 22.3 0.0 296 157 
GARCH-RPV 59.7 34.0 6.4 295 153  97.0 3.0 0.0 298 141  76.7 23.3 0.0 295 154  70.5 29.5 0.0 299 159 
This table summarizes the capital requirements imposed by the alternative VaR models. For each model the table presents the percentage of days during the out of sample 
forecasting period that the model is placed in the green, yellow and red zone according to the Basel traffic light system, the average daily capital requirements and its standard 
deviation. The bold faced fonts denote that the model has been placed in the red zone or it has failed the statistical tests ((un)conditional coverage test and dynamic quantile test), 
or both of them. The HAR-RV-G and the AHAR-RPV-G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification for their residuals.   
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 Table 11 EPA and SPA tests for the Market Risk Capital (MRC) loss function  

 % days 
EPA-average

(p-values) 

Median 
Sign-test 

(p-values) 
SPA 

(p-values) 
GARCH-skst 72.94 0.00 0.00 0.00 
FIGARCH-skst 74.76 0.00 0.00 0.00 
APARCH-skst 67.69 0.00 0.00 0.00 
ARMA-skst 70.58 0.05 0.00 0.00 
ARMA-EVT 79.78 0.00 0.00 0.00 
ARFIMA-skst 67.45 0.14 0.00 0.00 
ARFIMA-EVT 58.37 0.94 0.00 0.00 
HAR-RV-skst 73.11 0.00 0.00 0.00 
HAR-RV-EVT 78.36 0.03 0.00 0.00 
HAR-RPV-skst 71.23 0.00 0.00 0.00 
HAR-RPV-EVT 78.13 0.04 0.00 0.00 
HAR-RV-G-skst 80.96 0.00 0.00 0.00 
HAR-RV-G-FHS 75.83 0.00 0.00 0.00 
HAR-RV-G-EVT 66.51 0.99 0.00 0.00 
AHAR-RPV-G-skst 69.87 0.00 0.00 0.00 
AHAR-RPV-G-FHS 77.30 0.00 0.00 0.00 
AHAR-RPV-G-EVT - - - 0.00 
GARCH-RV-FHS 56.78 1.00 0.00 0.63 
GARCH-RV-EVT 61.50 1.00 0.00 0.00 
GARCH-RPV-FHS 60.44 0.00 1.00 0.45 
GARCH-RPV-EVT 64.68 0.99 0.00 0.00 
The first column depicts the volatility models and the VaR method used. The 
bold faced p-values denote rejection of the null hypothesis at a 5% significance 
level. 
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 Table 12 EPA and SPA tests for the Firm Loss Function (FLF) 

Average FLF % days 
EPA-average

(p-values) 

Median 
Sign-test 

 (p-values) 
SPA 

(p-values) 
GARCH-skst 4.47 66.03 0.00 0.00 0.00 
FIGARCH-skst 4.48 66.29 0.00 0.00 0.00 
APARCH-skst 4.45 68.55 0.00 0.00 0.00 
ARMA-skst 4.44 72.15 0.00 0.00 0.00 
ARMA-EVT 4.40 64.39 0.00 0.00 0.00 
ARFIMA-skst 4.43 73.84 0.00 0.00 0.00 
ARFIMA-EVT 4.34 63.16 0.00 0.00 0.00 
HAR-RV-skst 4.45 73.84 0.00 0.00 0.00 
HAR-RV-EVT 4.38 66.34 0.00 0.00 0.00 
HAR-RPV-skst 4.55 78.52 0.00 0.00 0.00 
HAR-RPV-EVT 4.38 65.88 0.00 0.00 0.00 
HAR-RV-G-skst 4.43 74.72 0.00 0.00 0.00 
HAR-RV-G-FHS 4.28 62.49 0.17 0.00 0.00 
HAR-RV-G-EVT 4.38 67.06 0.00 0.00 0.00 
AHAR-RPV-G-skst 4.39 75.13 0.00 0.00 0.00 
AHAR-RPV-G-FHS 4.33 79.09 0.00 0.00 0.00 
AHAR-RPV-G-EVT 4.26 - - - 0.02 
GARCH-RV-FHS 4.23 60.02 0.80 0.00 0.00 
GARCH-RV-EVT 4.23 60.43 0.77 0.00 0.00 
GARCH-RPV-FHS 4.19 58.63 0.00 0.97 0.24 
GARCH-RPV-EVT 4.19 58.89 0.97 0.00 0.76 
The first column depicts the volatility models and the VaR method used. The bold faced p-
values denote rejection of the null hypothesis at a 5% significance level. 
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Table 13 1% VaR forecasting during the latest financial crisis period (07.01.2007 - 09.30.2009) 
 Skewed Student  FHS    EVT   
 FR AQLF UC CC  DQ  %Red FR AQLF UC CC   DQ  %Red FR AQLF UC CC  DQ  %Red
EWMA 1.60 6 2.14 13 0.19 6 0.36 6 0.01 10 0.0 1.6 3 1.66 5 0.19 3 0.19 4 0.03 4 0.0  1.24 2 1.56 9 0.58 2 0.78 2 0.03 9 0.0 
GARCH 1.78 9 1.42 8 0.10 9 0.21 9 0.01 11 0.0 2.5 11 1.90 11 0.00 11 0.01 11 0.00 12 15.3  2.49 13 1.76 10 0.00 13 0.01 13 0.00 14 15.3 
FIGARCH 1.60 6 1.54 10 0.19 6 0.36 6 0.01 9 0.0 2 5 1.63 4 0.04 5 0.11 5 0.00 11 0.0  1.95 10 1.51 8 0.04 10 0.11 10 0.00 13 0.0 
EGARCH 2.66 14 2.24 14 0.00 14 0.00 14 0.00 14 15.3 3 13 2.57 14 0.00 11 0.00 13 0.00 14 20.8  2.31 12 2.25 14 0.01 12 0.02 12 0.00 12 9.8 
APARCH 2.13 12 1.65 11 0.02 12 0.05 12 0.00 13 0.0 2.7 12 2.11 12 0.00 11 0.00 12 0.00 10 5.9  2.13 11 1.82 12 0.02 11 0.05 11 0.00 10 0.0 
GJR 2.31 13 1.74 12 0.01 13 0.02 13 0.00 12 0.7 3 13 2.22 13 0.00 11 0.00 13 0.00 13 22.7  2.66 14 2.04 13 0.00 14 0.00 14 0.00 11 4.4 
ARMA 1.42 5 1.16 4 0.35 5 0.57 5 0.79 5 0.0 2.3 9 1.69 8 0.01 9 0.02 9 0.00 6 6.4  1.42 4 1.32 3 0.35 4 0.57 4 0.57 4 0.0 
ARFIMA 1.24 4 1.24 5 0.58 4 0.78 4 0.85 4 0.0 2.1 6 1.66 6 0.02 6 0.05 6 0.00 8 15.5  1.24 2 1.37 5 0.58 2 0.78 2 0.64 3 0.0 
HAR-RV 1.60 6 1.31 6 0.19 6 0.36 6 0.49 6 0.0 2.3 9 1.77 10 0.01 9 0.02 9 0.00 9 15.8  1.42 4 1.38 6 0.35 4 0.57 4 0.46 7 0.0 
HAR-RPV 1.07 1 1.12 3 0.88 1 0.93 1 0.96 3 0.0 2.1 6 1.62 3 0.02 6 0.05 6 0.00 7 13.0  1.42 4 1.39 7 0.35 4 0.57 4 0.47 6 0.0 
HAR-RV-G 1.78 9 1.36 7 0.10 9 0.21 9 0.44 7 0.0 2.1 6 1.72 9 0.02 6 0.05 6 0.03 5 0.0  1.07 1 1.27 2 0.88 1 0.93 1 0.95 1 0.0 
AHAR-RPV-G 1.78 9 1.49 9 0.10 9 0.21 9 0.27 8 0.0 1.6 3 1.69 7 0.19 3 0.36 3 0.45 3 0.0  1.78 9 1.78 11 0.10 9 0.21 9 0.27 8 0.0 
GARCH-RV 0.89 2 0.75 1 0.79 2 0.92 2 0.99 2 0.0 1.4 1 1.20 1 0.35 1 0.57 1 0.67 1 0.0  1.42 4 1.26 1 0.35 4 0.57 4 0.66 2 0.0 
GARCH-RPV 0.89 2 0.79 2 0.79 2 0.92 2 0.99 1 0.0  1.4 1 1.36 2 0.35 1 0.57 1 0.66 2 0.0  1.60 1.33 0.19 8 0.36 8 0.538 4 5 0.0 
This table summarizes the failure rate (FR), the Average QLF, the p-values for the unconditional coverage (UC), the conditional coverage (CC) and dynamic 
quantile (DQ) test results and the percentage of days in red zone (%Red). The bold faced numbers for the UC, CC and DQ denote rejection of the null at a 5% 
significance level. The HAR-RV-G and the AHAR-RPV-G are the HAR-RV and the Asymmetric HAR-RPV models respectively, with a GARCH specification 
for their residuals.   
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Table 14 EPA and SPA tests for the MRC and FLF during the latest financial crisis period (07.01.2007 - 09.30.2009) 
 MRC FLF 

 Average % days 
EPA-average

(p-values) 

Median 
Sign-test
(p-values)

SPA 
(p-values) Average % days

EPA-average 
(p-values) 

Median 
Sign-test 
(p-values)

SPA 
(p-values)

ARMA-skst 484 25 1.00 1.00 0.00 6.66 45 0.50 0.98 0.00 
ARMA-EVT 509 48 0.66 0.83 0.00 6.83 52 0.01 0.21 0.00 
ARFIMA-skst 478 12 1.00 1.00 0.00 6.56 48 0.94 0.81 0.00 
ARFIMA-EVT 487 25 1.00 1.00 0.00 6.61 51 0.79 0.32 0.00 
HAR-RV-skst 496 29 1.00 1.00 0.00 6.60 47 0.88 0.92 0.00 
HAR-RV-EVT 503 49 0.99 0.74 0.00 6.74 53 0.07 0.11 0.00 
HAR-RPV-skst 488 24 1.00 1.00 0.00 6.77 55 0.02 0.01 0.00 
HAR-RPV-EVT 503 50 0.98 0.58 0.00 6.74 53 0.07 0.10 0.00 
HAR-RV-G-skst 488 53 0.07 0.08 0.00 6.60 50 0.89 0.48 0.00 
HAR-RV-G-EVT 487 19 1.00 1.00 0.00 6.75 56 0.04 0.00 0.00 
AHAR-RPV-G-skst 506 20 1.00 1.00 0.00 6.57 16 1.00 1.00 0.00 
AHAR-RPV-G-FHS 510 66 0.54 0.00 0.00 6.75 62 0.00 0.00 0.00 
AHAR-RPV-G-EVT 510 - - - 0.00 6.66 - - - 0.00 
GARCH-RV-skst 469 8 1.00 1.00 0.00 6.93 60 0.01 0.00 0.00 
GARCH-RV-FHS 469 12 1.00 1.00 0.00 6.27 35 1.00 1.00 0.00 
GARCH-RV-EVT 467 8 1.00 1.00 0.00 6.23 34 1.00 1.00 0.00 
GARCH-RPV-skst 451 0 1.00 1.00 0.55 6.51 49 0.94 0.68 0.00 
GARCH-RPV-FHS 469 21 1.00 1.00 0.00 6.16 35 1.00 1.00 0.00 
GARCH-RPV-EVT 478 18 1.00 1.00 6.06 32 1.00 1.00 0.72 0.00  
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