11 research outputs found

    A comprehensive non-targeted analysis study of the prenatal exposome

    No full text
    Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: 1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); 2) examine the differences in chemical abundance between maternal and cord blood samples; and 3) examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry (HRMS) using liquid chromatography – quadrupole time-of-flight mass spectrometry (LC-QTOF/MS), in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between 3 poly and perfluoroalkyl substances (PFAS) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFAS and fatty acid regulating proteins

    Applications of Machine Learning to In Silico Quantification of Chemicals without Analytical Standards

    No full text
    Non-targeted analysis provides a comprehensive approach to analyze environmental and biological samples for nearly all chemicals present. One of the main shortcomings of current analytical methods and workflows is that they are unable to provide any quantitative information constituting an important obstacle in understanding environmental fate and human exposure. Herein, we present an in silico quantification method using mahine-learning for chemicals analyzed using electrospray ionization (ESI). We considered three data sets from different instrumental setups: (i) capillary electrophoresis electrospray ionization-mass spectrometry (CE-MS) in positive ionization mode (ESI+), (ii) liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in ESI+ and (iii) LC-QTOF/MS in negative ionization mode (ESI-). We developed and applied two different machine-learning algorithms: a random forest (RF) and an artificial neural network (ANN) to predict the relative response factors (RRFs) of different chemicals based on their physicochemical properties. Chemical concentrations can then be calculated by dividing the measured abundance of a chemical, as peak area or peak height, by its corresponding RRF. We evaluated our models and tested their predictive power using 5-fold cross-validation (CV) and y randomization. Both the RF and the ANN models showed great promise in predicting RRFs. However, the accuracy of the predictions was dependent on the data set composition and the experimental setup. For the CE-MS ESI+ data set, the best model predicted measured RRFs with a mean absolute error (MAE) of 0.19 log units and a cross-validation coefficient of determination (Q2) of 0.84 for the testing set. For the LC-QTOF/MS ESI+ data set, the best model predicted measured RRFs with an MAE of 0.32 and a Q2 of 0.40. For the LC-QTOF/MS ESI- data set, the best model predicted measured RRFs with a MAE of 0.50 and a Q2 of 0.20. Our findings suggest that machine-learning algorithms can be used for predicting concentrations of nontargeted chemicals with reasonable uncertainties, especially in ESI+, while the application on ESI- remains a more challenging problem

    A Comprehensive Non-targeted Analysis Study of the Prenatal Exposome.

    No full text
    Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: (1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); (2) to examine the differences in chemical abundance between maternal and cord blood samples; and (3) to examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins

    A quest to identify suitable organic tracers for estimating children’s dust ingestion rates

    No full text
    Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that could be used as tracers to calculate children's dust ingestion rates. We proposed a set of criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) have available or obtainable ADME information for biomarker-based exposure reconstruction. To identify compounds meeting these four criteria, we developed a workflow that encompasses non-targeted analysis approaches, literature and database searching, and multimedia modeling. We then implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our criteria (using one small, publicly available dataset to show proof of concept). Initially, five chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous manual investigation raised many questions about the applicability of these chemicals as tracers. Based on the results of this initial pilot study, no individual compounds can be unequivocally considered suitable tracers for calculating dust ingestion rates. Future work must therefore consider larger datasets, generated from broader measurement studies and literature searches, as well as refinements to selection criteria, to identify robust and defensible tracer compounds

    Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects

    No full text
    Abstract Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this “bright line” approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks

    A science-based agenda for health-protective chemical assessments and decisions: overview and consensus statement

    Get PDF
    Abstract The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a “safe” or “no-risk” level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection
    corecore