3,872 research outputs found

    Read-Green resonances in a topological superconductor coupled to a bath

    Full text link
    We study a topological superconductor capable of exchanging particles with an environment. This additional interaction breaks particle-number symmetry and can be modelled by means of an integrable Hamiltonian, building on the class of Richardson-Gaudin pairing models. The isolated system supports zero-energy modes at a topological phase transition, which disappear when allowing for particle exchange with an environment. However, it is shown from the exact solution that these still play an important role in system-environment particle exchange, which can be observed through resonances in low-energy and -momentum level occupations. These fluctuations signal topologically protected Read-Green points and cannot be observed within traditional mean-field theory.Comment: 7 pages, 4 figure

    Inner products in integrable Richardson-Gaudin models

    Get PDF
    We present the inner products of eigenstates in integrable Richardson-Gaudin models from two different perspectives and derive two classes of Gaudin-like determinant expressions for such inner products. The requirement that one of the states is on-shell arises naturally by demanding that a state has a dual representation. By implicitly combining these different representations, inner products can be recast as domain wall boundary partition functions. The structure of all involved matrices in terms of Cauchy matrices is made explicit and used to show how one of the classes returns the Slavnov determinant formula. This framework provides a further connection between two different approaches for integrable models, one in which everything is expressed in terms of rapidities satisfying Bethe equations, and one in which everything is expressed in terms of the eigenvalues of conserved charges, satisfying quadratic equations.Comment: 21+16 pages, minor revisions compared to the previous versio

    CheMPS2: a free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry

    Get PDF
    The density matrix renormalization group (DMRG) has become an indispensable numerical tool to find exact eigenstates of finite-size quantum systems with strong correlation. In the fields of condensed matter, nuclear structure and molecular electronic structure, it has significantly extended the system sizes that can be handled compared to full configuration interaction, without losing numerical accuracy. For quantum chemistry (QC), the most efficient implementations of DMRG require the incorporation of particle number, spin and point group symmetries in the underlying matrix product state (MPS) ansatz, as well as the use of so-called complementary operators. The symmetries introduce a sparse block structure in the MPS ansatz and in the intermediary contracted tensors. If a symmetry is non-abelian, the Wigner-Eckart theorem allows to factorize a tensor into a Clebsch-Gordan coefficient and a reduced tensor. In addition, the fermion signs have to be carefully tracked. Because of these challenges, implementing DMRG efficiently for QC is not straightforward. Efficient and freely available implementations are therefore highly desired. In this work we present CheMPS2, our free open-source spin-adapted implementation of DMRG for ab initio QC. Around CheMPS2, we have implemented the augmented Hessian Newton-Raphson complete active space self-consistent field method, with exact Hessian. The bond dissociation curves of the 12 lowest states of the carbon dimer were obtained at the DMRG(28 orbitals, 12 electrons, DSU(2)_{\mathsf{SU(2)}}=2500)/cc-pVDZ level of theory. The contribution of 1s1s core correlation to the X1ÎŁg+X^1\Sigma_g^+ bond dissociation curve of the carbon dimer was estimated by comparing energies at the DMRG(36o, 12e, DSU(2)_{\mathsf{SU(2)}}=2500)/cc-pCVDZ and DMRG-SCF(34o, 8e, DSU(2)_{\mathsf{SU(2)}}=2500)/cc-pCVDZ levels of theory.Comment: 16 pages, 13 figure

    A 125.5 GeV Higgs Boson in F-SU(5): Imminently Observable Proton Decay, A 130 GeV Gamma-ray Line, and SUSY Multijets & Light Stops at the LHC8

    Get PDF
    We establish that the light Higgs boson mass in the context of the No-Scale Flipped SU(5) GUT with TeV scale vector-like matter multiplets (flippons) is consistent with m_h = 125.5+-0.5 GeV in the region of the best supersymmetry (SUSY) spectrum fit to low statistics data excesses observed by ATLAS in multijet and light stop 5/fb SUSY searches at the LHC7. Simultaneous satisfaction of these disparate goals is achieved by employing a minor decrease in the SU(5) partial unification scale M_{32} to lower the flippon mass, inducing a larger Higgs boson mass shift from the flippon loops. The reduction in M_{32}, which is facilitated by a phenomenologically favorable reduction of the low-energy strong coupling constant, moreover suggests an imminently observable (e|mu)^+ pi^0 proton decay with a central value time scale of 1.7x10^34 years. At the same point in the model space, we find a lightest neutralino mass of m_{\chi} = 145 GeV, which is suitable for the production of 130 GeV monochromatic gamma-rays through annihilations yielding associated Z-bosons; a signal with this energy signature has been identified within observations of the galactic center by the FERMI-LAT Space Telescope. In conjunction with direct correlations to the fate of the ATLAS multijet and light stop production channels presently being tested at the LHC8, we suggest that the reality of a 125.5 GeV Higgs boson affords a particularly rich company of specific and imminently testable associated observables.Comment: European Physical Journal C Version; 10 Pages, 2 Figures, 2 Table

    Non-trivial Supersymmetry Correlations between ATLAS and CMS Observations

    Full text link
    We present definite correlations between the CMS 5 \fb all-hadronic search employing the stransverse mass variable MT2M_{T2} and the ATLAS 5 \fb all-hadronic and multijet supersymmetry (SUSY) searches, suggesting the possibility that both the ATLAS and CMS experiments are already registering a faint but legitimate SUSY signal at the LHC. We isolate this prospective mutual productivity beyond the Standard Model in the framework of the supersymmetric No-Scale Flipped SUSU(5) grand unified theory, supplemented with extra vector-like matter (flippons). Evident overproduction is observed in three CMS \mt2 and four ATLAS hadronic and multijet signal regions, where a \x2 fitting procedure of the CMS 5 \fb \mt2 search establishes a best fit SUSY mass in sharp agreement with corresponding ATLAS searches of equivalently heightened signal significance. We believe this correlated behavior across two distinct experiments at precisely the same SUSY mass scale to be highly non-trivial, and potentially indicative of an existing 5 \fb LHC reach into a pervasive physical supersymmetry framework.Comment: 6 Pages, 2 Figure
    • …
    corecore