6 research outputs found
Yield and Composition of the Essential Oil of <i>Clinopodium nepeta</i> subsp. <i>spruneri</i> as Affected by Harvest Season and Cultivation Method, i.e., Outdoor, Greenhouse and In Vitro Culture
Clinopodium nepeta subsp. spruneri is an aromatic herb with a mint-oregano flavor, used in Mediterranean regions in traditional medicine. The aerial parts of the plant are rich in essential oil that has antioxidant, antimicrobial and anti-inflammatory properties as well as insecticidal activity. The aim of our work was to determine the yield and composition of the essential oil of the plant, in relation to the harvest season and cultivation method, i.e., outdoor, greenhouse and in vitro culture, using gas chromatography-mass spectrometry (GC-MS) as an analytical tool. Essential oil yield fluctuated similarly in outdoor and greenhouse plants during the year (0.9–2.6%), with higher percentages (2.1–2.6%) in the hottest periods June–October (flowering stage) and April (vegetative stage), and was similar to the yield in in vitro plants (1.7%). More compounds were identified in the oil of outdoor and greenhouse plants (35) compared to that of in vitro plants (21), while the main compounds were the same, i.e., pulegone (13.0–32.0%, highest in February–April, 15.0% in vitro), piperitenone oxide (3.8–31.8%, lowest in February, 34.2% in vitro), piperitone epoxide (4.6–16.4%, highest in February, 15.5% in vitro), D-limonene (2.1–8.8%, lowest in February, 10.0% in vitro), isomenthone (2.3–23.0%, highest in February, 4.6% in vitro), germacrene D (1.9–6.5% highest in December-April, 2.9% in vitro) and dicyclogermacrene (2.1–5.3%, highest in December–April, 5.2% in vitro). Therefore, greenhouse and in vitro cultures were equally efficient in yielding essential oil and its constituents as outdoor cultivation, while in outdoor and greenhouse cultivations, the harvest season, mainly due to the prevailing ambient temperatures, affected the essential oil yield and its percentage composition
Genotoxic and Antigenotoxic Assessment of Chios Mastic Oil by the In Vitro Micronucleus Test on Human Lymphocytes and the In Vivo Wing Somatic Test on Drosophila
International audienceChios mastic oil (CMO), the essential oil derived from Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. In the present study, the potential genotoxic activity of CMO as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC) were evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the in vitro experiments, lymphocytes were treated with 0.01, 0.05 and 0.10% (v/v) of CMO with or without 0.05 ÎĽg/ml MMC, while in the in vivo assay Drosophila larvae were fed with 0.05, 0.10, 0.50 and 1.00% (v/v) of CMO with or without 2.50 ÎĽg/ml MMC. CMO did not significantly increase the frequency of micronuclei (MN) or total wing spots, indicating lack of mutagenic or recombinogenic activity. However, the in vitro analysis suggested cytotoxic activity of CMO. The simultaneous administration of MMC with CMO did not alter considerably the frequencies of MMC-induced MN and wing spots showing that CMO doesn't exert antigenotoxic or antirecombinogenic action. Therefore, CMO could be considered as a safe product in terms of genotoxic potential. Even though it could not afford any protection against DNA damage, at least under our experimental conditions, its cytotoxic potential could be of interest