5 research outputs found

    Bacillus velezensis R22 inhibits the growth of multiple fungal phytopathogens by producing surfactin and four fengycin homologues

    No full text
    AbstractSignificant agricultural losses are caused by the phytopathogenic fungi Botrytis cinerea and Phytophthora infestans, as well as bacteria of the Ralstonia solanacearum species. The present work aimed to isolate rhizobacteria for simultaneous biocontrol of these three phytopathogenic species and to suggest the mechanisms of their antagonistic action. Among 120 Bacillus spp. isolated from soils, Bacillus velezensis and Bacillus licheniformis strains displayed the highest activity against all three phytopathogens. A rapid, polymerase chain reaction-based method for detecting nonribosomal peptide synthetase genes was developed to elucidate the genetic basis of these traits. The presence of fenA, srfAA, ppsA, and lchAA genes, encoding fengycin/surfactin/plipastatin synthetases and lichenysin synthase, was revealed in the strains’ genomes. The whole genome sequencing (WGS) of B. velezensis R22 showed that it contains 4,081,504 bp (with G + C content 46.35%), 4087 genes for 3935 proteins, 72 tRNAs, 14 rRNAs, and 5 ncRNAs. WGS allowed the prediction of 10 complete clusters for secondary metabolites with putative antimicrobial activity: difficidin, fengycin, bacillaene, butyrosin, bacillibactin, bacilysin, surfactin, macrolactin H, macrolactin R22, and velezensin. LC-MS and high-sensitivity UHPLC-Q-TOF LC-MS/MS analysis were used to search for the predicted metabolites in cell-free supernatants of B. velezensis R22. The compounds with the strongest antifungal activity are surfactin with a C15 β-OH fatty acid chain; two homologous forms of fengycin A; and two fengycin B homologues containing C16 and C17 β-hydroxy fatty acid chains. The broad antimicrobial spectrum of B. velezensis R22 and its molecular characterization provide a good basis for the future development of plant protection preparations

    Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785

    No full text
    Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment

    Antitumor Activity of Bioactive Compounds from Rapana venosa against Human Breast Cell Lines

    No full text
    This study is the first report describing the promising antitumor activity of biologically active compounds isolated from the hemolymph of marine snail Rapana venosa—a fraction with Mw between 50 and 100 kDa and two structural subunits (RvH1 and RvH2), tested on a panel of human breast cell lines—six lines of different molecular subtypes of breast cancer MDA-MB-231, MDA-MB-468, BT-474, BT-549, SK-BR-3, and MCF-7 and the non-cancerous MCF-10A. The fraction with Mw 50–100 kDa (HRv 50–100) showed good antitumor activity manifested by a significant decrease in cell viability, altered morphology, autophagy, and p53 activation in treated cancer cells. An apparent synergistic effect was observed for the combination of HRv 50–100 with cis-platin for all tested cell lines. The combination of HRv 50–100 with cisplatin and/or tamoxifen is three times more effective compared to treatment with classical chemotherapeutics alone. The main proteins in the active fraction, with Mw at ~50 kDa, ~65 kDa, ~100 kDa, were identified by MALDI-MS, MS/MS analyses, and bioinformatics. Homology was established with known proteins with antitumor potential detected in different mollusc species: peroxidase-like protein, glycoproteins Aplysianin A, L-amino acid oxidase (LAAO), and the functional unit with Mw 50 kDa of RvH. Our study reveals new perspectives for application of HRv 50–100 as an antitumor agent used alone or as a booster in combination with different chemotherapies

    <i>Bacillus velezensis</i> R22 inhibits the growth of multiple fungal phytopathogens by producing surfactin and four fengycin homologues

    No full text
    Significant agricultural losses are caused by the phytopathogenic fungi Botrytis cinerea and Phytophthora infestans, as well as bacteria of the Ralstonia solanacearum species. The present work aimed to isolate rhizobacteria for simultaneous biocontrol of these three phytopathogenic species and to suggest the mechanisms of their antagonistic action. Among 120 Bacillus spp. isolated from soils, Bacillus velezensis and Bacillus licheniformis strains displayed the highest activity against all three phytopathogens. A rapid, polymerase chain reaction-based method for detecting nonribosomal peptide synthetase genes was developed to elucidate the genetic basis of these traits. The presence of fenA, srfAA, ppsA, and lchAA genes, encoding fengycin/surfactin/plipastatin synthetases and lichenysin synthase, was revealed in the strains’ genomes. The whole genome sequencing (WGS) of B. velezensis R22 showed that it contains 4,081,504 bp (with G + C content 46.35%), 4087 genes for 3935 proteins, 72 tRNAs, 14 rRNAs, and 5 ncRNAs. WGS allowed the prediction of 10 complete clusters for secondary metabolites with putative antimicrobial activity: difficidin, fengycin, bacillaene, butyrosin, bacillibactin, bacilysin, surfactin, macrolactin H, macrolactin R22, and velezensin. LC-MS and high-sensitivity UHPLC-Q-TOF LC-MS/MS analysis were used to search for the predicted metabolites in cell-free supernatants of B. velezensis R22. The compounds with the strongest antifungal activity are surfactin with a C15 β-OH fatty acid chain; two homologous forms of fengycin A; and two fengycin B homologues containing C16 and C17 β-hydroxy fatty acid chains. The broad antimicrobial spectrum of B. velezensis R22 and its molecular characterization provide a good basis for the future development of plant protection preparations.</p

    Structural and functional characterization of cold-active sialidase isolated from Antarctic fungus Penicillium griseofulvum P29

    No full text
    The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 → 3) sialyl linkages than those containing α(2 → 6) linkages.Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date
    corecore