2 research outputs found

    Exponential synchronization of complex delayed dynamical networks with general topology

    Get PDF
    The global exponential synchronization of complex delayed dynamical networks possessing general topology is investigated in this contribution. The network model considered can represent both the directed and undirected weighted networks. Novel delay-dependent linear controllers are designed via Lyapunov stability theory and appropriate property of the coupling matrix. It is shown that the controlled network is globally exponentially synchronized with a given convergence rate. Two examples of typical dynamical networks with coupling delays of this class, one possesses directed and the other with undirected coupling topology, both having a Lorenz system at each node, have been used to demonstrate and verify the novel control design proposed. © 2007 IEEE.published_or_final_versio

    Impact of average-dwell-time characterizations for switched nonlinear systems on complex systems control

    No full text
    It is well known, present day theory of switched systems is largely based on assuming certain small but finite time interval termed average dwell time. Thus it appears dominantly characterized by some slow switching condition with the average dwell time satisfying a certain lower bound, which implies a constraint nonetheless. In cases of nonlinear systems, there may well appear certain non-expected complexity phenomena of particularly different nature when switching becomes no longer useful. A fast switching condition with average the dwell time satisfying an upper bound is explored and established. A comparison analysis of these innovated characterizations via slightly different overview yielded new results on the transient behaviour of switched nonlinear systems, while preserving the system stability. The approach of multiple Lyapunov functions is used in current analysis and the switched systems framework is believed to be extended slightly. Thus some new insight into the underlying, switching caused, system’s complexities has been achieved
    corecore