35 research outputs found

    Analysis of the backward bending modes in damped rotating beams

    Full text link
    [EN] This article presents a study of the backward bending mode of a simply supported rotating Rayleigh beam with internal damping. The study analyses the natural frequency behaviour of the backward mode according to the internal viscous damping ratio, the slenderness of the beam and its spin speed. To date, the behaviour of the natural frequency of the backward mode is known to be a monotonically decreasing function with spin speed due to gyroscopic effects. In this article, however, it is shown that this behaviour of the natural frequency may not hold for certain damping and slenderness conditions, and reaches a minimum value (concave function) from which it begins to increase. Accordingly, the analytical expression of the spin speed for which the natural frequency of the backward mode attains the minimum value has been obtained. In addition, the internal damping ratio and slenderness intervals associated with such behaviour have been also provided.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors gratefully acknowledge the financial support of Ministerio de Ciencia, Innovacion y Universidades Agencia Estatal de Investigacion and the European Regional Development Fund (project TRA2017-84701-R), as well as Generalitat Valenciana (project Prometeo/2016/007) and European Commission through the project 'RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles' (Horizon 2020 Shift2Rail JU call 2017, grant number 777564)Martínez Casas, J.; Denia Guzmán, FD.; Fayos Sancho, J.; Nadal, E.; Giner Navarro, J. (2019). Analysis of the backward bending modes in damped rotating beams. Advances in Mechanical Engineering. 11(4):1-13. https://doi.org/10.1177/1687814019840474S113114Zorzi, E. S., & Nelson, H. D. (1977). Finite Element Simulation of Rotor-Bearing Systems With Internal Damping. Journal of Engineering for Power, 99(1), 71-76. doi:10.1115/1.3446254Ku, D.-M. (1998). FINITE ELEMENT ANALYSIS OF WHIRL SPEEDS FOR ROTOR-BEARING SYSTEMS WITH INTERNAL DAMPING. Mechanical Systems and Signal Processing, 12(5), 599-610. doi:10.1006/mssp.1998.0159Dimentberg, M. F. (2005). Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3), 759-765. doi:10.1016/j.jsv.2004.11.025Vatta, F., & Vigliani, A. (2008). Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11), 1376-1384. doi:10.1016/j.mechmachtheory.2007.12.009Rosales, M. B., & Filipich, C. P. (1993). Dynamic Stability of a Spinning Beam Carrying an Axial Dead Load. Journal of Sound and Vibration, 163(2), 283-294. doi:10.1006/jsvi.1993.1165Mazzei, A. J., & Scott, R. A. (2003). Effects of internal viscous damping on the stability of a rotating shaft driven through a universal joint. Journal of Sound and Vibration, 265(4), 863-885. doi:10.1016/s0022-460x(02)01256-7Ehrich, F. F. (1964). Shaft Whirl Induced by Rotor Internal Damping. Journal of Applied Mechanics, 31(2), 279-282. doi:10.1115/1.3629598Vance, J. M., & Lee, J. (1974). Stability of High Speed Rotors With Internal Friction. Journal of Engineering for Industry, 96(3), 960-968. doi:10.1115/1.3438468Vila, P., Baeza, L., Martínez-Casas, J., & Carballeira, J. (2014). Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch. Vehicle System Dynamics, 52(sup1), 92-108. doi:10.1080/00423114.2014.881513Glocker, C., Cataldi-Spinola, E., & Leine, R. I. (2009). Curve squealing of trains: Measurement, modelling and simulation. Journal of Sound and Vibration, 324(1-2), 365-386. doi:10.1016/j.jsv.2009.01.048Bauer, H. F. (1980). Vibration of a rotating uniform beam, part I: Orientation in the axis of rotation. Journal of Sound and Vibration, 72(2), 177-189. doi:10.1016/0022-460x(80)90651-3Shiau, T. N., & Hwang, J. L. (1993). Generalized Polynomial Expansion Method for the Dynamic Analysis of Rotor-Bearing Systems. Journal of Engineering for Gas Turbines and Power, 115(2), 209-217. doi:10.1115/1.2906696Hili, M. A., Fakhfakh, T., & Haddar, M. (2006). Vibration analysis of a rotating flexible shaft–disk system. Journal of Engineering Mathematics, 57(4), 351-363. doi:10.1007/s10665-006-9060-3Young, T. H., Shiau, T. N., & Kuo, Z. H. (2007). Dynamic stability of rotor-bearing systems subjected to random axial forces. Journal of Sound and Vibration, 305(3), 467-480. doi:10.1016/j.jsv.2007.04.016Wang, J., Hurskainen, V.-V., Matikainen, M. K., Sopanen, J., & Mikkola, A. (2017). On the dynamic analysis of rotating shafts using nonlinear superelement and absolute nodal coordinate formulations. Advances in Mechanical Engineering, 9(11), 168781401773267. doi:10.1177/1687814017732672Lee, C.-W. (1993). Vibration Analysis of Rotors. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8173-8Genta, G. (1999). Vibration of Structures and Machines. doi:10.1007/978-1-4612-1450-2Cheng, C. C., & Lin, J. K. (2003). Modelling a rotating shaft subjected to a high-speed moving force. Journal of Sound and Vibration, 261(5), 955-965. doi:10.1016/s0022-460x(02)01374-

    Statistical Dynamics of Vibroimpact Systems

    No full text
    corecore