162 research outputs found
Non-Gaussianity Consistency Relation for Multi-field Inflation
While detection of the "local form" bispectrum of primordial perturbations
would rule out all single-field inflation models, multi-field models would
still be allowed. We show that multi-field models described by the
formalism obey an inequality between and one of the local-form
{\it trispectrum} amplitudes, , such that with a possible logarithmic scale dependence,
provided that 2-loop terms are small. Detection of a violation of this
inequality would rule out most of multi-field models, challenging inflation as
a mechanism for generating the primoridal perturbations.Comment: 5 pages. Accepted for publication in Physical Review Letter
Breakdown of Semiclassical Methods in de Sitter Space
Massless interacting scalar fields in de Sitter space have long been known to
experience large fluctuations over length scales larger than Hubble distances.
A similar situation arises in condensed matter physics in the vicinity of a
critical point, and in this better-understood situation these large
fluctuations indicate the failure in this regime of mean-field methods. We
argue that for non-Goldstone scalars in de Sitter space, these fluctuations can
also be interpreted as signaling the complete breakdown of the semi-classical
methods widely used throughout cosmology. By power-counting the infrared
properties of Feynman graphs in de Sitter space we find that for a massive
scalar interacting through a \lambda \phi^4$ interaction, control over the loop
approximation is lost for masses smaller than m \simeq \sqrt \lambda H/2\pi,
where H is the Hubble scale. We briefly discuss some potential implications for
inflationary cosmology.Comment: 24 pages, 7 figures, v2; added references, clarified the resummation
discussio
Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum
The methods of effective field theory are used to study generic theories of
inflation with a single inflaton field and to perform a general analysis of the
associated non-Gaussianities. We investigate the amplitudes and shapes of the
various generic three-point correlators, the bispectra, which may be generated
by different classes of single-field inflationary models. Besides the
well-known results for the DBI-like models and the ghost inflationary theories,
we point out that curvature-related interactions may give rise to large
non-Gaussianities in the form of bispectra characterized by a flat shape which,
quite interestingly, is independently produced by several interaction terms. In
a subsequent work, we will perform a similar general analysis for the
non-Gaussianities generated by the generic four-point correlator, the
trispectrum.Comment: Version matching the one published in JCAP, 2 typos fixed, references
added. 30 pages, 20 figure
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references
Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model
We investigate the primordial trispectra of the general multifield DBI
inflationary model. In contrast with the single field model, the entropic modes
can source the curvature perturbations on the super horizon scales, so we
calculate the contributions from the interaction of four entropic modes
mediating one adiabatic mode to the trispectra, at the large transfer limit
(). We obtained the general form of the 4-point correlation
functions, plotted the shape diagrams in two specific momenta configurations,
"equilateral configuration" and "specialized configuration". Our figures showed
that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models
We investigate one-loop quantum corrections to the power spectrum of
adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in
multiple DBI inflationary models. We find that due to the non-canonical kinetic
term in DBI models, the loop corrections are enhanced by slow-varying parameter
and small sound speed . Thus, in general the loop-corrections
in multi-DBI models can be large. Moreover, we find that the loop-corrections
from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos
corrected, version for publishing in jca
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics
Following the pioneering observations with COBE in the early 1990s, studies
of the cosmic microwave background (CMB) have focused on temperature and
polarization anisotropies. CMB spectral distortions - tiny departures of the
CMB energy spectrum from that of a perfect blackbody - provide a second,
independent probe of fundamental physics, with a reach deep into the primordial
Universe. The theoretical foundation of spectral distortions has seen major
advances in recent years, which highlight the immense potential of this
emerging field. Spectral distortions probe a fundamental property of the
Universe - its thermal history - thereby providing additional insight into
processes within the cosmological standard model (CSM) as well as new physics
beyond. Spectral distortions are an important tool for understanding inflation
and the nature of dark matter. They shed new light on the physics of
recombination and reionization, both prominent stages in the evolution of our
Universe, and furnish critical information on baryonic feedback processes, in
addition to probing primordial correlation functions at scales inaccessible to
other tracers. In principle the range of signals is vast: many orders of
magnitude of discovery space could be explored by detailed observations of the
CMB energy spectrum. Several CSM signals are predicted and provide clear
experimental targets, some of which are already observable with present-day
technology. Confirmation of these signals would extend the reach of the CSM by
orders of magnitude in physical scale as the Universe evolves from the initial
stages to its present form. The absence of these signals would pose a huge
theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3
Figures, minor update to reference
A parton picture of de Sitter space during slow-roll inflation
It is well-known that expectation values in de Sitter space are afflicted by
infra-red divergences. Long ago, Starobinsky proposed that infra-red effects in
de Sitter space could be accommodated by evolving the long-wavelength part of
the field according to the classical field equations plus a stochastic source
term. I argue that--when quantum-mechanical loop corrections are taken into
account--the separate-universe picture of superhorizon evolution in de Sitter
space is equivalent, in a certain leading-logarithm approximation, to
Starobinsky's stochastic approach. In particular, the time evolution of a box
of de Sitter space can be understood in exact analogy with the DGLAP evolution
of partons within a hadron, which describes a slow logarithmic evolution in the
distribution of the hadron's constituent partons with the energy scale at which
they are probed.Comment: 36 pages; uses iopart.cls and feynmp.sty. v2: Minor typos corrected.
Matches version published in JCA
Semiclassical relations and IR effects in de Sitter and slow-roll space-times
We calculate IR divergent graviton one-loop corrections to scalar correlators
in de Sitter space, and show that the leading IR contribution may be reproduced
via simple semiclassical consistency relations. One can likewise use such
semiclassical relations to calculate leading IR corrections to correlators in
slow-roll inflation. The regulated corrections shift the tensor/scalar ratio
and consistency relation of single field inflation, and non-gaussianity
parameters averaged over very large distances. For inflation of sufficient
duration, for example arising from a chaotic inflationary scenario, these
corrections become of order unity. First-order corrections of this size
indicate a breakdown of the perturbative expansion, and suggest the need for a
non-perturbative description of the corresponding regime. This is analogous to
a situation argued to arise in black hole evolution, and to interfere with a
sharp perturbative calculation of "missing information" in Hawking radiation.Comment: 32 pages, 2 figures; v2: running of spectral index included and other
minor changes; v3: minor changes to agree with published versio
- …
