6 research outputs found

    Three-dimensional full-field X-ray orientation microscopy

    Get PDF
    International audienceA previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature

    Dehydration-induced damage and deformation in gypsum and implications for subduction zone processes

    No full text
    Experimental heating tests were performed on Volterra gypsum to study the micromechanical consequences of the dehydration reaction. The experimental conditions were drained at 5 MPa fluid pressure and confining pressures ranging from 15 to 55 MPa. One test was performed with a constantly applied differential stress of 30 MPa. The reaction is marked by (1) a porosity increase and homogeneous compaction, (2) a swarm of acoustic emissions, (3) a large decrease in P and S wave velocities, and (4) a decrease in V P/V S ratio. Wave velocity data are interpreted in terms of crack density and pore aspect ratio, which, modeling pores as spheroids, is estimated at around 0.05 (crack-like spheroid). Complementary tests performed in an environmental scanning electron microscope indicate that cracks first form inside the gypsum grains and are oriented preferentially along the crystal structure of gypsum. Most of the visible porosity appears at later stages when grains shrink and grain boundaries open. Extrapolation of our data to serpentinites in subduction zones suggest that the signature of dehydrating rocks in seismic tomography could be a low apparent Poisson's ratio, although this interpretation may be masked by anisotropy development due to preexisting crystal preferred orientation and/or deformation-induced cracking. The large compaction and the absence of strain localization in the deformation test suggests that dehydrating rocks maybe seen as soft inclusions and could thus induce ruptures in the surrounding, nonreacting rocks

    Deformation of aluminum in situ SEM and full field measurements by digital image correlation: evidence of concomitant crystal slip and grain boundary sliding

    No full text
    International audienceMechanical testing in situ scanning electron microscopy (SEM) has become a standard technique for multiscale micromechanical investigation of polycrystalline materials. Direct observation of developing strain heterogeneities allows identification of the active mechanisms and quantification of their respective contributions to the overall strain. We developed a novel experimental setup for thermomechanical testing in situ SEM, especially suited to full strain field measurements. These are based on digital image correlation (DIC), from the sample scale to the scales of the aggregate and the single grain. We present results obtained during simple compression, at controlled displacement rates and at temperatures up to 400°C, of nearly pure polycrystalline aluminum exhibiting randomly oriented coarse grains (ca. 300 m in size). Electron microlithography was applied to produce specific surface marking patterns appropriate for the different scales of interest. Full surface strain fields were obtained by digital image correlation (DIC) analysis. The localization patterns evidenced dominant crystal slip plasticity, but also substantial simultaneous and continuous activity of grain boundary sliding (GBS), the contribution of which increased with temperature. We therefore advocate that experiments such as these here presented are necessary to go beyond a description in terms of deformation mechanism maps, which attribute deformation to a single mechanism

    Deformation of aluminum in situ SEM and full field measurements by digital image correlation: evidence of concomitant crystal slip and grain boundary sliding

    No full text
    International audienceMechanical testing in situ scanning electron microscopy (SEM) has become a standard technique for multiscale micromechanical investigation of polycrystalline materials. Direct observation of developing strain heterogeneities allows identification of the active mechanisms and quantification of their respective contributions to the overall strain. We developed a novel experimental setup for thermomechanical testing in situ SEM, especially suited to full strain field measurements. These are based on digital image correlation (DIC), from the sample scale to the scales of the aggregate and the single grain. We present results obtained during simple compression, at controlled displacement rates and at temperatures up to 400°C, of nearly pure polycrystalline aluminum exhibiting randomly oriented coarse grains (ca. 300 m in size). Electron microlithography was applied to produce specific surface marking patterns appropriate for the different scales of interest. Full surface strain fields were obtained by digital image correlation (DIC) analysis. The localization patterns evidenced dominant crystal slip plasticity, but also substantial simultaneous and continuous activity of grain boundary sliding (GBS), the contribution of which increased with temperature. We therefore advocate that experiments such as these here presented are necessary to go beyond a description in terms of deformation mechanism maps, which attribute deformation to a single mechanism

    Deformation of aluminum in situ SEM and full field measurements by digital image correlation: evidence of concomitant crystal slip and grain boundary sliding

    No full text
    Mechanical testing in situ scanning electron microscopy (SEM) has become a standard technique for multiscale micromechanical investigation of polycrystalline materials. Direct observation of developing strain heterogeneities allows identification of the active mechanisms and quantification of their respective contributions to the overall strain. We developed a novel experimental setup for thermomechanical testing in situ SEM, especially suited to full strain field measurements. These are based on digital image correlation (DIC), from the sample scale to the scales of the aggregate and the single grain. We present results obtained during simple compression, at controlled displacement rates and at temperatures up to 400°C, of nearly pure polycrystalline aluminum exhibiting randomly oriented coarse grains (ca. 300 m in size). Electron microlithography was applied to produce specific surface marking patterns appropriate for the different scales of interest. Full surface strain fields were obtained by digital image correlation (DIC) analysis. The localization patterns evidenced dominant crystal slip plasticity, but also substantial simultaneous and continuous activity of grain boundary sliding (GBS), the contribution of which increased with temperature. We therefore advocate that experiments such as these here presented are necessary to go beyond a description in terms of deformation mechanism maps, which attribute deformation to a single mechanism

    Deformation of aluminum in situ SEM and full field measurements by digital image correlation: evidence of concomitant crystal slip and grain boundary sliding

    No full text
    International audienceMechanical testing in situ scanning electron microscopy (SEM) has become a standard technique for multiscale micromechanical investigation of polycrystalline materials. Direct observation of developing strain heterogeneities allows identification of the active mechanisms and quantification of their respective contributions to the overall strain. We developed a novel experimental setup for thermomechanical testing in situ SEM, especially suited to full strain field measurements. These are based on digital image correlation (DIC), from the sample scale to the scales of the aggregate and the single grain. We present results obtained during simple compression, at controlled displacement rates and at temperatures up to 400°C, of nearly pure polycrystalline aluminum exhibiting randomly oriented coarse grains (ca. 300 m in size). Electron microlithography was applied to produce specific surface marking patterns appropriate for the different scales of interest. Full surface strain fields were obtained by digital image correlation (DIC) analysis. The localization patterns evidenced dominant crystal slip plasticity, but also substantial simultaneous and continuous activity of grain boundary sliding (GBS), the contribution of which increased with temperature. We therefore advocate that experiments such as these here presented are necessary to go beyond a description in terms of deformation mechanism maps, which attribute deformation to a single mechanism
    corecore