20 research outputs found

    Mario Bunge and the Current Revival of Causal Realism

    Get PDF
    Mario Bunge’s Causality and Modern Science is arguably one of the best treatments of the causal realist tradition ever to have been written, one that defends the place of causality as a category in the conceptual framework of modern science. And yet in the current revival of causal realism in contemporary metaphysics, there is very little awareness of Bunge’s work. This paper seeks to remedy this, by highlighting one particular criticism Bunge levels at the Aristotelian view of causation and illustrating its relevance for contemporary powers-based accounts. Roughly, the Aristotelian view depicts interactions between objects as involving a unidirectional exertion of influence of one object upon another. This idea of unidirectional action is central to the Aristotelian distinction between active and passive powers, and its corresponding distinction between active and passive objects. As Bunge points out, modern physics does not recognise the existence of any unidirectional actions at all; all influence comes in the form of reciprocal action, or interaction. If this is right, all notions deriving from or influenced by the idea of unidirectional actions—such as the concept of mutual manifestation and reciprocal disposition partners—risk being false by the same measure. Bunge drew the conclusion that the Aristotelian view is ontologically inadequate, but still advocated its use as the most useful approximation available in science. He considered, but ultimately rejected the possibility of a modified view of causation built on reciprocal action, because, in his view, it couldn’t account for the productivity of causation. Bunge’s critique of this particular aspect of the Aristotelian view cannot be overlooked in contemporary metaphysics, but it is possible to construe a modified view of causation that takes the reciprocity of interactions seriously without loss of productivity.Peer reviewe

    Actin-Related Protein Arp6 Influences H2A.Z-Dependent and -Independent Gene Expression and Links Ribosomal Protein Genes to Nuclear Pores

    Get PDF
    Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Δ) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Δ strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression
    corecore