17 research outputs found

    A machine learning framework for elastic constants predictions in multi-principal element alloys

    No full text
    On the one hand, multi-principal element alloys (MPEAs) have created a paradigm shift in alloy design due to large compositional space, whereas on the other, they have presented enormous computational challenges for theory-based materials design, especially density functional theory (DFT), which is inherently computationally expensive even for traditional dilute alloys. In this paper, we present a machine learning framework, namely PREDICT (PRedict properties from Existing Database In Complex alloys Territory), that opens a pathway to predict elastic constants in large compositional space with little computational expense. The framework only relies on the DFT database of binary alloys and predicts Voigt–Reuss–Hill Young’s modulus, shear modulus, bulk modulus, elastic constants, and Poisson’s ratio in MPEAs. We show that the key descriptors of elastic constants are the A–B bond length and cohesive energy. The framework can predict elastic constants in hypothetical compositions as long as the constituent elements are present in the database, thereby enabling property exploration in multi-compositional systems. We illustrate predictions in a FCC Ni-Cu-Au-Pd-Pt system

    Machine Learning Enabled Prediction of Stacking Fault Energies in Concentrated Alloys

    No full text
    Recent works have revealed a unique combination of high strength and high ductility in certain compositions of high-entropy alloys (HEAs), which is attributed to the low stacking fault energy (SFE). While atomistic calculations have been successful in predicting the SFE of pure metals, large variations up to 200 mJ/m2 have been observed in HEAs. One of the leading causes of such variations is the limited number of atoms that can be modeled in atomistic calculations; as a result, due to random distribution of elements in HEAs, various nearest neighbor environments may not be adequately captured in small supercells resulting in different SFE values. Such variation further increases with the increase in the number of elements in a given composition. In this work, we use machine learning to overcome the limitation of smaller system sizes and provide a methodology to significantly reduce the variation and uncertainty in predicting SFEs. We show that the SFE can be accurately predicted across the composition ranges in binary alloys. This capability then enables us to predict the SFE of multi-elemental alloys by training the model using only binary alloys. Consequently, SFEs of complex alloys can be predicted using a binary alloys database, and the need to perform calculations for every new composition can be circumvented

    Microstructure design for fast oxygen conduction

    No full text
    corecore