27 research outputs found

    Evaluation of the Kinetics of Biologically Catalyzed Treatment and Regeneration of NOX Scrubbing Process Waters

    Get PDF
    A prototype apparatus was configured and operated to evaluate the efficacy of a process that integrates the absorption of nitric oxide in an aqueous solution of ferrous ethylenediamintetraacetic acid (Fe(II)EDTA) with biological treatment and regeneration of spent scrubber water. In addition to operation of a continuous-flow, closed-loop prototype process, a series of batch reactor tests were conducted to investigate the kinetics of microbially-catalyzed reduction of the nitrosyl adduct of ferrous EDTA and microbially-catalyzed reduction of oxidized ferric EDTA. Denitrifying and strictly anaerobic biomass from a municipal wastewater treatment process was cultivated using ethanol as the primary electron donor and nitrate and ferric EDTA as electron acceptors. Following 42-days of bioreactor start-up, nitric oxide (NO) scrubbed from a counter-current absorption tower replaced nitrate. After 27 days of aclimation, an 80-day period of steady state operation was observed. During steady state operation, mean NO scrubbing efficiency of 97.9% was achieved, process water oxidation/reduction potential (ORP) remained between -75 and -140 mV (vs. Ag/AgCl ref.), and generated biogas was 91% N2, by volume. Biomass in the prototype reactor was flocculent, and traveled throughout the closed-loop process. Because of the constant recirculation of washed-out biomass and low observed biomass yield (0.0393 g VSS/g COD), mass balance showed the prototype process sludge age to be 75.9 days. During steady state operation, biomass was extracted for kinetic batch analyses. Batch reactor kinetic tests revealed that both ferric EDTA and NO reduction proceed as a result of microbially-catalyzed reactions. Microbially-catalyzed reduction of ferric EDTA proceeds according to the Monod kinetic model, while strong inhibition of the microbially-catalyzed reduction of NO•Fe(II)EDTA was observed at ethanol concentrations above 0.33 g COD/l. Based on observed population parameters, including biomass yield, endogenous decay, and substrate utilization rate, the critical mean cell retention time below which wash out of a continuously-stirred bioreactor would occur was found to be 11.7 days and 51.4 days for NO reducers and ferric EDTA reducers, respectively. Experimental results provide insight into conditions required for the successful operation of a process for the biological treatment and regeneration of spent scrubber solution from a NOX absorption process

    Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention

    Get PDF
    We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression

    Bentonite Extrusion into Near-Borehole Fracture

    No full text
    In this paper, we discuss laboratory experiments of bentonite swelling and coupled finite element simulations to explicate bentonite extrusion. For the experiments, we developed a swell cell apparatus to understand the bentonite migration to the near-borehole fracture. We constructed the swell cell using acrylic, which comprised of a borehole and open fracture. Initially, the borehole of the swell cell was filled with bentonite and liquid. Then, the apparatus was sealed for observations. Due to the liquid saturation increase of bentonite, its swelling pressure increased. The developed pressure caused the extrusion of bentonite into the fracture, and the flow of bentonite from the borehole decreased with time. Moreover, for the effectiveness of bentonite-based plugging, there is a limiting condition, which represents the relation between the maximum bentonite migration length with the fracture aperture. Additionally, we also performed the bentonite free swelling test to assess the swelling potential to the fluid salinity, and we observed that with the increase of the salinity, the swelling potential decreased. In addition, we present a fully coupled two-phases fluids flow (e.g., liquid and gas) and deformation flow finite element (FE) model for the bentonite column elements and swell cell model. We also combined the Modified Cam Clay (MCC) model and the swelling model for the bentonite deformation flow model. Then, we also present the validation of the bentonite model. To model other sub-domains, we used the poro-elastic model. Additionally, we obtained the transition between the wetting phase (i.e., liquid) and non-wetting phase (i.e., gas) using the Brooks–Corey model. From the finite element results, we observed that due to the liquid intrusion into the bentonite, the developed capillary pressure gradient results in a change of the hydro-mechanical behavior of the bentonite. Initially, we observed that due to the high capillary pressure gradient, the liquid saturation and the swelling pressure increased, which also decreased with time due to a reduction in the capillary pressure gradient. Thereby, the swelling pressure-induced bentonite migration to the fracture also decreased over time, and after the equilibrium state (for a negligible pressure gradient), there was no significant transport of bentonite into the fracture

    Sequestration of Dissolved CO 2

    No full text
    corecore