8 research outputs found

    Conceptual structure within and between modalities

    Get PDF
    Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed

    A Connectionist Account of the Pattern of Deficits Across Semantic and Lexical Tasks in Five Semantic Dementia Patients

    No full text
    Semantic dementia (SD) is a selective impairment to the semantic system due to progressive atrophy of the frontal and the temporal cortices. The temporal atrophy starts from the pole and progresses posteriorly. Tasks that are usually impaired in SD patients include object/picture naming, word-picture matching, and delayed copying. In addition to the semantic impairment, SD patients also show compromised performance on a number of lexical tasks such as word reading, spelling, verb past-tense inflection, and two-alternative forced choice lexical decision. Similarly to the semantic deficits, the lexical deficits are most prominent for atypical low-frequency items. For the majority of the patients, performance measures on the tasks mentioned above correlate with each other and with the overall semantic performance (cf. Patterson et al.

    A single-system account of semantic and lexical deficits in five semantic dementia patients.

    No full text
    In semantic dementia (SD), there is a correlation between performance on semantic tasks such as picture naming and lexical tasks such as reading aloud. However, there have been a few case reports of patients with spared reading despite profound semantic impairment. These reports have sparked an ongoing debate about how the brain processes conceptual versus lexical knowledge. One possibility is that there are two functionally distinct systems in the brain-one for semantic and one for lexical processing. Alternatively, there may be a single system involved in both. We present a computational investigation of the role of individual differences in explaining the relationship between naming and reading performance in five SD patients, among whom there are cases of both association and dissociation of deficits. We used a connectionist model where information from different modalities feeds into a single integrative layer. Our simulations successfully produced the overall relationship between reading and naming seen in SD and provided multiple fits for both association and dissociation data, suggesting that a single, cross-modal, integrative system is sufficient for both semantic and lexical tasks and that individual differences among patients are essential in accounting for variability in performance.</p

    Are there mental lexicons? The role of semantics in lexical decision.

    No full text
    What is the underlying representation of lexical knowledge? How do we know whether a given string of letters is a word, whereas another string of letters is not? There are two competing models of lexical processing in the literature. The first proposes that we rely on mental lexicons. The second claims there are no mental lexicons; we identify certain items as words based on semantic knowledge. Thus, the former approach - the multiple-systems view - posits that lexical and semantic processing are subserved by separate systems, whereas the latter approach - the single-system view - holds that the two are interdependent. Semantic dementia patients, who have a cross-modal semantic impairment, show an accompanying and related lexical deficit. These findings support the single-system approach. However, a report of an SD patient whose impairment on lexical decision was not related to his semantic deficits in item-specific ways has presented a challenge to this view. If the two types of processing rely on a common system, then shouldn't damage impair the same items on all tasks? We present a single-system model of lexical and semantic processing, where there are no lexicons, and performance on lexical decision involves the activation of semantic representations. We show how, when these representations are damaged, accuracy on semantic and lexical tasks falls off together, but not necessarily on the same set of items. These findings are congruent with the patient data. We provide an explicit explanation of this pattern of results in our model, by defining and measuring the effects of two orthogonal factors - spelling consistency and concept consistency.</p
    corecore