45 research outputs found

    NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription

    Get PDF
    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NFYA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response

    Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells

    Get PDF
    Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 cells. We show that the promoter of the human SOX3 gene is extremely hypomethylated both in undifferentiated NT2/D1 cells and during the early phases of RA-induced neural differentiation. By employing chromatin immunopre-cipitation, we analyze several histone modifications across different regions of the SOX3 gene and their dynamics following initiation of differentiation. In the same timeframe we investigate profiles of selected histone marks on the promoters of human SOX1 and SOX2 genes. We demonstrate differences in histone signatures of SOX1, SOX2 and SOX3 genes. Considering the importance of SOXB1 genes in the process of neural differentiation, the present study contributes to a better understanding of epigenetic mechanisms implicated in the regulation of pluripotency maintenance and commitment towards the neural lineage

    MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism

    Get PDF
    Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues

    Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63

    Get PDF
    p53 and p63 are transcription factors -TFs- playing master roles in the DNA-damage response and in the development and maintenance of pluristratified epithelia, respectively. p53 mutations are common in epithelial tumors and HaCaT keratinocytes harbor two p53 alleles -H179Y and R282Q- with gain-of-function (GOF) activity. Indeed, functional inactivation of mutp53 affects the growth rate of HaCaT. We investigated the strategy of mutp53, by performing ChIP-Seq experiments of mutp53 and p63 and analyzed the transcriptome after mutp53 inactivation. Mutp53 bind to 7135 locations in vivo, with a robust overlap with p63. De novo motifs discovery recovered a p53/p63RE with high information content in sites bound by p63 and mutp53/p63, but not by mutp53 alone: these sites are rather enriched in elements of other TFs. The HaCaT p63 locations are only partially overlapping with those of normal keratinocytes; importantly, and enriched in mutp53 sites which delineate a functionally different group of target genes. Our data favour a model whereby mutp53 GOF mutants act both by tethering growth-controlling TFs and highjacking p63 to new locations

    An autoregulatory loop controls the expression of the transcription factor NF-Y

    Get PDF
    The heterotrimeric NF-Y complex is a pioneer factor that binds to CCAAT-genes and regulates their transcription. NF-Y cooperates with multiple transcription factors and co-regulators in order to positively or negatively influence gene transcription. The recruitment of NF-Y to CCAAT box is significantly enriched in cancer-associated gene promoters loci and positively correlates with malignancy. NF-Y subunits, in particular the DNA-binding subunit NF-YA and the histone-fold subunit NF-YC, appear overexpressed in specific types of cancer. Here we demonstrate that NF-Y subunits expression is finely regulated through transcriptional and post-translational mechanisms thus allowing control over basal expression levels. NF-Y negatively regulates the transcription of the genes encoding for its subunits. DNA pull-down/affinity purification assay coupled with Mass Spectrometry identified putative co-regulators, such as Lamin A, involved in NF-YA gene transcription level. We also evidentiate how the stability of the complex is severely affected by the absence of one subunit. Our results identified for the first time one of the mechanisms responsible for NF-Y expression, which may be involved in the aberrant expression and activity observed in tumor cells and other pathological conditions

    NF-YA splice variants have different roles on muscle differentiation

    Get PDF
    The heterotrimeric CCAAT-binding factor NF-Y controls the expression of a multitude of genes involved in cell cycle progression. NF-YA is present in two alternatively spliced isoforms, NF-YAs and NF-YAl, differing in 28 aminoacids in the N-terminal Q-rich activation domain. NF-YAs has been identified as a regulator of stemness and proliferation in mouse embryonic cells (mESCs) and human hematopoietic stem cells (hHSCs), whereas the role of NF-YAl is not clear. In the muscle system, NF-YA expression is observed in proliferating cells, but barely detectable in terminally differentiated cells in vitro and adult skeletal muscle in vivo. Here, we show that NF-YA inactivation in mouse myoblasts impairs both proliferation and differentiation. The overexpression of the two NF-YA isoforms differentially affects myoblasts fate: NF-YAs enhance cell proliferation, while NF-YAl boosts differentiation. The molecular mechanisms were investigated by expression profilings, detailing the opposite programs of the two isoforms. Bioinformatic analysis of the regulated promoters failed to detect a significant presence of CCAAT boxes in the regulated genes. NF-YAl activates directly Mef2D, Six genes, and p57kip2 (Cdkn1c), and indirectly the myogenic regulatory factors (MRFs). Specifically, Cdkn1c activation is induced by NF-Y binding to its CCAAT promoter and by reducing the expression of the lncRNA Kcnq1ot1, a negative regulator of Cdkn1c transcription. Overall, our results indicate that NF-YA alternative splicing is an influential muscle cell determinant, through direct regulation of selected cell cycle blocking genes, and, directly and indirectly, of muscle-specific transcription factors

    The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle

    Get PDF
    Satellite cells represent myogenic stem cells that allow the homeostasis and repair of adult skeletal muscle. Here the authors report that the transcription factor NF-Y is expressed in satellite cells and is important for their maintenance and proper myogenic differentiation

    Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients

    Get PDF
    Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes
    corecore