3 research outputs found

    Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleonopathies

    Get PDF
    Objectives: Parkinson’s Disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA) are neurodegenerative disorders of the aging population characterized by the progressive accumulation of alpha-synuclein. Jointly these disorders have been denominated synucleinopathies and currently no disease modifying treatments are available. Previous in vivo studies in transgenic (tg) mice have shown that active and passive immunization targeting alpha-synuclein ameliorates to some extent deficits and synuclein accumulation, however it’s unknown if combining humoral and cellular immunization might synergize and also reduce inflammation and improve microglial cell mediated synuclein clearance. Methods: PDGF- alpha-synuclein tg mice and control non-tg mice were immunized with: 1) Glucan Particle (GP) adjuvant alone, 2) GP human (hu)- alpha-synuclein (active immunization), 3) GP plus rapamycin and 4) GP plus rapamycin and hu-alpha-synuclein (combined active and humoral) and analyzed by neuropathological and biochemical markers. Results: Compared to tg mice treated with adjuvant alone, mice immunized with GP hu-alpha-synuclein displayed a 30% reduction in alpha-synuclein accumulation. Combined immunotherapy with GP plus rapamycin and hu-alpha-synuclein resulted in 50% reduction in alpha-synuclein accumulation which was accompanied by reduced neuro-inflammation (Iba-1, GFAP, IL6, TNFalpha), phospho and insoluble alpha-synuclein, microglia and astroglia cell numbers, and retention of CD25, FoxP3 and CD4 positive cells. Levels of TGFb1 were also increased. Serological studies showed that active immunization resulted in higher levels of total IgG, IgG1 and IgG2 titers, levels were slightly higher in the combined group. Conclusions: In vivo studies targeting alpha-synuclein support the hypothesis that cellular immunization might enhance the effects of active immunotherapy for the treatment of synucleionopathies

    Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    Get PDF
    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker’s yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles

    Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies

    No full text
    Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies.SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy
    corecore