107 research outputs found

    Change in Percentage of Families Offered Coverage at Work, 1998-2005

    Get PDF
    Uses data from the National Health Interview Survey to measure changes between 1998 and 2005 in the percentage of families with working adults that have at least one offer of health insurance through an employer

    In-Beam Background Suppression Shield

    Get PDF
    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .Comment: 12 pages, 8 figures, proceeding of NDS 2015, 4th International Workshop on Neutron Delivery Systems, 28 -30 September 2015, ILL Grenoble, Franc

    Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Full text link
    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 {\AA} neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.Comment: This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Impact of crystallite size on the performance of a beryllium reflector

    Full text link
    Beryllium reflectors are used at spallation neutron sources in order to enhance the low-energy flux of neutrons emanating from the surface of a cold and thermal moderator. The design of such a moderator/reflector system is typically carried out using detailed Monte-Carlo simulations, where the beryllium reflector is assumed to behave as a poly-crystalline material. In reality, however, inhomogeneities in the beryllium could lead to discrepancies between the performance of the actual system when compared to the modeled system. The dependence of the total cross section in particular on crystallite size, in the Bragg scattering region, could influence the reflector performance, and if such effect is significant, it should be taken into account in the design of the moderator/reflector system. In this paper, we report on the preliminary results of using cross-section libraries, which include corrections for the crystallite size effect, in spallation source neutronics calculations.Comment: ICANS-XXII

    Simulating neutron transport in long beamlines at a spallation neutron source using Geant4

    Full text link
    The transport of neutrons in long beamlines at spallation neutron sources presents a unique challenge for Monte-Carlo transport calculations. This is due to the need to accurately model the deep-penetration of high-energy neutrons through meters of thick dense shields close to the source and at the same time to model the transport of low-energy neutrons across distances up to around 150 m in length. Typically, such types of calculations may be carried out with MCNP-based codes or alternatively PHITS. However, in recent years there has been an increased interest in the suitability of Geant4 for such types of calculations. Therefore, we have implemented supermirror physics, a neutron chopper module and the duct-source variance reduction technique for low-energy neutron transport from the PHITS Monte-Carlo code into Geant4. In the current work, we present a series of benchmarks of these extensions with the PHITS software, which demonstrates the suitability of Geant4 for simulating long neutron beamlines at a spallation neutron source, such as the European Spallation Source, currently under construction in Lund, Sweden.Comment: ICANS-XXII

    Racial/Ethnic Disparities in Access to Care among Children: How Does Medicaid Do in Closing the Gaps?

    Get PDF
    While Medicaid and the Children\u27s Health Insurance Program (CHIP) have become increasingly important sources of health coverage for low-income children in all racial and ethnic groups, the program plays an especially large role for children of color, who are more likely than white children to be low-income. In 2007, Medicaid and CHIP covered nearly one in five white children, but roughly two in five African American and Hispanic children. As policymakers engaged in health reform consider the merits of public and private approaches to expanding coverage, this report provides an assessment of Medicaid\u27s relative impact on racial and ethnic disparities in access. The analysis compared health care access for white, African American and Hispanic children who were privately insured, uninsured, or enrolled in Medicaid or CHIP. Key findings include: Racial and ethnic disparities in access to care were no more likely among children enrolled in Medicaid than among privately insured children. Insurance coverage – both private and Medicaid – often improved access for children in each racial and ethnic group, but generally did not significantly narrow racial and ethnic disparities in their access to health care. This report analyzes data for more than 15,000 children from the 2003 and 2004 Medical Expenditure Panel Survey, a nationally representative household survey conducted by the Agency for Healthcare Research and Quality

    Development of High Intensity Neutron Source at the European Spallation Source

    Full text link
    The European Spallation Source being constructed in Lund, Sweden will provide the user community with a neutron source of unprecedented brightness. By 2025, a suite of 15 instruments will be served by a high-brightness moderator system placed above the spallation target. The ESS infrastructure, consisting of the proton linac, the target station, and the instrument halls, allows for implementation of a second source below the spallation target. We propose to develop a second neutron source with a high-intensity moderator able to (1) deliver a larger total cold neutron flux, (2) provide high intensities at longer wavelengths in the spectral regions of Cold (4-10 \AA ), Very Cold (10-40 \AA ), and Ultra Cold (several 100 \AA ) neutrons, as opposed to Thermal and Cold neutrons delivered by the top moderator. Offering both unprecedented brilliance, flux, and spectral range in a single facility, this upgrade will make ESS the most versatile neutron source in the world and will further strengthen the leadership of Europe in neutron science. The new source will boost several areas of condensed matter research such as imaging and spin-echo, and will provide outstanding opportunities in fundamental physics investigations of the laws of nature at a precision unattainable anywhere else. At the heart of the proposed system is a volumetric liquid deuterium moderator. Based on proven technology, its performance will be optimized in a detailed engineering study. This moderator will be complemented by secondary sources to provide intense beams of Very- and Ultra-Cold Neutrons.Comment: 12 pages, 4 figures, proceeding of the 23rd meeting of the International Collaboration on Advanced Neutron Sources (ICANS XXIII) 13th - 18th October 2019 in Chattanooga, Tennesse

    Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    Full text link
    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument performance whilst at the same time delivering significant cost savings. A systematic holistic approach is suggested in this contribution to increase the effectiveness of this. Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International Collaboration on Advanced Neutron Sources), Mito, Japan. 201
    • …
    corecore