121 research outputs found

    Method for the identification of single mutations in large genomic regions using massive parallel sequencing

    Get PDF
    Map-based cloning of mutant genes is straightforward if the genome sequence and sufficient molecular markers are available. When a mutated gene in Arabidopsis causes a clear phenotype and is located in a genomic region where sufficient meiotic recombination takes place, the gene can be identified within 6-12 months. However, mutated genes that cause weak phenotypes are difficult to map to small genomic intervals due to faulty selection of F2 plants. Here, we describe a method that allows for rapid identification of roughly mapped genes by using a massive parallel sequencing strategy. A genomic region of 150 kb was PCR amplified in 7-17 kb pieces from an EMS Arabidopsis onset of leaf death ( old) mutant and its wild-type accession Landsberg erecta (Ler-0). Massive parallel sequencing and subsequent de novo assembly of the short sequences reliably identified 253 polymorphisms in a 110-kb region between the reference Col-0 and Ler-0 sequence. The analysis further revealed potential mutations in the old mutant of which one was confirmed to be present in the mutant. Thus the described method can be used for accelerating the map-based cloning of genes that cause weak phenotypes. An accompanying advantage is that the amplified fragments can be cloned and used to complement the mutant

    PIF Genes Mediate the Effect of Sucrose on Seedling Growth Dynamics

    Get PDF
    As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs), and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network

    Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells

    Get PDF
    Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4–5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∼0.35 total molecules of the pre-Initiation Complex factor Cdc45 are present. Thus, based on ORC availability, somatic cells contain ∼70,000 preRCs of this average total stoichiometry, although subunits may not be juxtaposed with each other. Except for ORC, the chromatin-bound complement of preRC subunits is even lower. Cdc45 is present at very low levels relative to the preRC subunits, but is highly stable, and the same limited number of stable Cdc45 molecules are present from the beginning of S-phase to its completion. Efforts to artificially increase Cdc45 levels through ectopic expression block cell growth. However, microinjection of excess purified Cdc45 into S-phase nuclei activates additional replication foci by three-fold, indicating that Cdc45 functions to activate dormant preRCs and is rate-limiting for somatic replicon usage. Paradoxically, although Cdc45 colocalizes in vivo with some MCM sites and is rate-limiting for DNA replication to occur, neither Cdc45 nor MCMs colocalize with active replication sites. Embryonic metazoan chromatin consists of small replicons that are used efficiently via an excess of preRC subunits. In contrast, somatic mammalian cells contain a low density of preRCs, each containing only a few MCMs that compete for limiting amounts of Cdc45. This provides a molecular explanation why, relative to embryonic replicon dynamics, somatic replicons are, on average, larger and origin efficiency tends to be lower. The stable, continuous, and rate-limiting nature of Cdc45 suggests that Cdc45 contributes to the staggering of replicon usage throughout S-phase, and that replicon activation requires reutilization of existing Cdc45 during S-phase

    Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis

    Get PDF
    Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought

    Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

    Get PDF
    The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure

    A Comprehensive Genome-Wide Map of Autonomously Replicating Sequences in a Naive Genome

    Get PDF
    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change
    corecore