42 research outputs found

    Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688

    Get PDF
    In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations.

    A single mutation in the core domain of the lac repressor reduces leakiness.

    Get PDF
    BACKGROUND: The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements triggered by binding of the lactose isomer allolactose to the core domain of the repressor impede DNA binding and lift repression. In Nature, the ability to detect and respond to environmental conditions comes at the cost of the encoded enzymes being constitutively expressed at low levels. The readily-switched regulation provided by LacI has resulted in its widespread use for protein overexpression, and its applications in molecular biology represent early examples of synthetic biology. However, the leakiness of LacI that is essential for the natural function of the lac operon leads to an increased energetic burden, and potentially toxicity, in heterologous protein production. RESULTS: Analysis of the features that confer promiscuity to the inducer-binding site of LacI identified tryptophan 220 as a target for saturation mutagenesis. We found that phenylalanine (similarly to tryptophan) affords a functional repressor that is still responsive to IPTG. Characterisation of the W220F mutant, LacIWF, by measuring the time dependence of GFP production at different IPTG concentrations and at various incubation temperatures showed a 10-fold reduction in leakiness and no decrease in GFP production. Cells harbouring a cytotoxic protein under regulatory control of LacIWF showed no decrease in viability in the early phases of cell growth. Changes in responsiveness to IPTG observed in vivo are supported by the thermal shift assay behaviour of purified LacIWF with IPTG and operator DNA. CONCLUSIONS: In LacI, long-range communications are responsible for the transmission of the signal from the inducer binding site to the DNA binding domain and our results are consistent with the involvement of position 220 in modulating these. The mutation of this single tryptophan residue to phenylalanine generated an enhanced repressor with a 10-fold decrease in leakiness. By minimising the energetic burden and cytotoxicity caused by leakiness, LacIWF constitutes a useful switch for protein overproduction and synthetic biology.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Insights into the molecular determinants of thermal stability in halohydrin dehalogenase HheD2

    Get PDF
    Halohydrin dehalogenases (HHDHs) are promising enzymes for application in biocatalysis due to their promiscuous epoxide ring-opening activity with various anionic nucleophiles. So far, seven different HHDH subtypes A to G have been reported with subtype D containing the by far largest number of enzymes. Moreover, several characterized members of subtype D have been reported to display outstanding characteristics such as high catalytic activity, broad substrate spectra or remarkable thermal stability. Yet, no structure of a D-type HHDH has been reported to date that could be used to investigate and understand those features on a molecular level. We therefore solved the crystal structure of HheD2 from gamma proteobacterium HTCC2207 at 1.6 Å resolution and used it as a starting point for targeted mutagenesis in combination with molecular dynamics (MD) simulation, in order to study the low thermal stability of HheD2 in comparison with other members of subtype D. This revealed a hydrogen bond between conserved residues Q160 and D198 to be connected with a high catalytic activity of this enzyme. Moreover, a flexible surface region containing two α-helices was identified to impact thermal stability of HheD2. Exchange of this surface region by residues of HheD3 yielded a variant with 10 °C higher melting temperature and reaction temperature optimum. Overall, our results provide important insights into the structure-function relationship of HheD2 and presumably for other D-type HHDHs. DATABASES: Structural data are available in PDB database under the accession number 7B73

    Population pharmacokinetics of vancomycin in term neonates with perinatal asphyxia treated with therapeutic hypothermia

    Get PDF
    Aims: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. Methods: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400–600 mg*h/L was used as target range. Results: Sixteen patients received vancomycin (median gestational age: 41 [range: 38–42] weeks, postnatal age: 4.4 [2.5–5.5] days, birth weight: 3.5 [2.3–4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20–0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. Conclusion: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.</p

    Population pharmacokinetics of vancomycin in term neonates with perinatal asphyxia treated with therapeutic hypothermia

    Get PDF
    Aims: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. Methods: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400–600 mg*h/L was used as target range. Results: Sixteen patients received vancomycin (median gestational age: 41 [range: 38–42] weeks, postnatal age: 4.4 [2.5–5.5] days, birth weight: 3.5 [2.3–4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20–0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. Conclusion: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.</p

    Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia

    Get PDF
    Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T.MIC) (for efficacy purposes and 100% T.4×MIC and 100% T.5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T.MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T.MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T.4×MIC and 100% T.5×MIC are desired.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Early treatment versus expectative management of patent ductus arteriosus in preterm infants

    Get PDF
    _Background:_ Much controversy exists about the optimal management of a patent ductus arteriosus (PDA) in preterm infants, especially in those born at a gestational age (GA) less than 28weeks. No causal relationship has been proven between a (haemodynamically significant) PDA and neonatal complications related to pulmonary hyperperfusion and/or systemic hypoperfusion. Although studies show conflicting results, a common understanding is that medical or surgical treatment of a PDA does not seem to reduce the risk of major neonatal morbidities and mortality. As the PDA might have closed spontaneously, treated children are potentially exposed to iatrogenic adverse effects. A conservative approach is gaining interest worldwide, although convincing evidence to support its use is lacking. _Methods:_ This multicentre, randomised, non-inferiority trial is conducted in neonatal intensive care units. The study population consists of preterm infants (GA1.5mm. Early treatment (between 24 and 72h postnatal age) with the cyclooxygenase inhibitor(COXi) ibuprofen (IBU) is compared with an expectative management (no intervention intended to close a PDA). The primary outcome is the composite of mortality, and/or necrotising enterocolitis (NEC) Bell stage ≥ IIa, and/or bronchopulmonary dysplasia (BPD) defined as the need for supplemental oxygen, all at a postmenstrual age (PMA) of 36weeks. Secondary outcome parameters are short term sequelae of cardiovascular failure, comorbidity and adverse events assessed during hospitalization and long-term neurodevelopmental outcome assessed at a corrected age of 2 years. Consequences regarding health economics are evaluated by cost effectiveness analysis and budget impact analysis. _Discussion:_ As a conservative approach is gaining interest, we investigate whether in preterm infants, born at a GA less than 28weeks, with a PDA an expectative management is non-inferior to early treatment with IBU regarding to the composite outcome of mortality and/or NEC and/or BPD at a PMA of 36weeks

    Population pharmacokinetics of vancomycin in term neonates with perinatal asphyxia treated with therapeutic hypothermia

    Get PDF
    Aims: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. Methods: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400–600 mg*h/L was used as target range. Results: Sixteen patients received vancomycin (median gestational age: 41 [range: 38–42] weeks, postnatal age: 4.4 [2.5–5.5] days, birth weight: 3.5 [2.3–4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20–0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. Conclusion: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing
    corecore