2 research outputs found

    Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation

    No full text
    Alzheimer’s disease (AD) is associated with impaired Aβ degradation in the brain. Enhancing the process of Aβ clearance is an attractive potential AD therapy. Treatment with LXR agonists may reduce Aβ levels in vivo. However, the clinical potential of many LXR agonists is limited because of their nonselective actions on LXRα/β, which lead to undesired hepatic lipogenesis via LXRα-dependent pathways. In this study, ABCA1 up-regulators were identified from a series of flavonoids and were found to preferentially activate LXRβ and up-regulate expression of ABCA1 and apoE in different cell lines. Further investigations confirmed that these compounds facilitate intracellular Aβ clearance in Aβ-loaded BV2 cells. Administration of compound <b>19</b> reduced total brain Aβ and plaque burden in APP/PS1 double transgenic mice, associated with elevated ABCA1 and apoE expression. Compared with the nonselective LXR agonists, the active compounds reported here induced less accumulation of undesired lipids and triglycerides in HepG2 cells

    Dual Function of RGD-Modified VEGI-192 for Breast Cancer Treatment

    No full text
    Identification of endogenous angiogenesis inhibitors has led to development of an increasingly attractive strategy for cancer therapy and other angiogenesis-driven diseases. Vascular endothelial growth inhibitor (VEGI), a potent and relatively nontoxic endogenous angiogenesis inhibitor, has been intensively studied, and this work shed new light on developing promising anti-angiogenic strategies. It is well-documented that the RGD (Arg-Gly-Asp) motif exhibits high binding affinity to integrin α<sub>v</sub>β<sub>3</sub>, which is abundantly expressed in cancer cells and specifically associated with angiogenesis on tumors. Here, we designed a fusion protein containing the special RGD-4C motif sequence and VEGI-192, aimed at offering more effective multiple targeting to tumor cells and tumor vasculature, and higher anti-angiogenic and antitumor efficacy. Functional tests demonstrated that the purified recombinant human RGD-VEGI-192 protein (rhRGD-VEGI-192) potently inhibited endothelial growth in vitro and suppressed neovascularization in chicken chorioallantoic membrane in vivo, to a higher degree as compared with rhVEGI-192 protein. More importantly, rhRGD-VEGI-192, but not rhVEGI-192 protein, could potentially target MDA-MB-435 breast tumor cells, significantly inhibiting growth of MDA-MB-435 cells in vitro, triggered apoptosis in MDA-MB-435 cells by activation of caspase-8 as well as caspase-3, which was mediated by activating the JNK signaling associated with upregulation of pro-apoptotic protein Puma, and consequently led to the observed significant antitumor effect in vivo against a human breast cancer xenograft. Our study indicated that the RGD-VEGI-192 fusion protein might represent a novel anti-angiogenic and antitumor strategy
    corecore