15 research outputs found

    Wideband-tuneable, nanotube mode-locked, fibre laser

    Get PDF
    Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems

    Er femtidens primærhelsetjeneste digital, fysisk eller hybrid? En studie av en ny, digital helsetjeneste i møte med det etablerte helsevesenet.

    Get PDF
    Photoluminescence (PL) and excitation spectra of Bi melt doped oxide and chalcogenide glasses are very similar, indicating the same Bi center is present. When implanted with Bi, chalcogenide, phosphate and silica glass, and BaF2 crystal all display characteristically different PL spectra to when Bi is incorporated by melt-doping. This indicates that ion implantation is able to generate Bi centers which are not present in samples whose dopants are introduced during melting. Bi-related PL bands have been observed in glasses with very similar compositions to those in which carrier-type reversal has been observed, indicating that these phenomena are related to the same Bi centers, which we suggest are interstitial Bi2+ and Bi clusters
    corecore