2 research outputs found

    Effects of mistletoe (Viscum album L.) extracts Iscador on cell cycle and survival of tumor cells

    No full text
    The molecular and cellular mechanisms by which mistletoe (Viscum album L.) extracts exert cytotoxic and immunomodulatory anti-tumoral effects are largely unknown. In this study the hypothesis that Iscador preparations induce tumor regression by cell cycle inhibition and/or interference with apoptotic signaling pathways in cancer cells was investigated. Also a possible effect on angiogenesis, which is a prerequisite for tumor growth in vivo, is studied in endothelial cell cultures. Furthermore, it was examined which apoptotic signaling route(s) is (are) activated by Iscador by studying specific pro-apoptotic proteins in cultured cells. To characterize these properties, 9 human cancer cell lines of different origin, one epidermis derived cell line and 2 endothelial cell cultures were incubated with different concentrations of Iscador Quercus Spezial and Iscador Malus Spezial. Cell cycle kinetic parameters were measured by bromodeoxyuridine (BrdU) pulse labeling and tubulin staining. Apoptotic responses were detected by M30 Cyto-Death or Annexin V/propidium iodide assays. Characterization of the apoptotic pathway(s) was performed by staining cells for amongst others active caspase 3 and cytochrome C (mitochondrial pathway), as well as active caspase 8 (death receptor pathway). The sensitivity to Iscador treatment varies strongly between different cell lines and also ing those derived from small cell lung cancer, and adenocarcinoma of the lung and breast, as well as endothelial cell cultures, Iscador caused early cell cycle inhibition followed by apoptosis in a dose dependent manner. Amongst the low responders are cell lines derived from colorectal carcinoma. In general Iscador Malus exerted a stronger response than Iscador Quercus. Apoptosis was induced by activating the mitochondrial but not the death receptor dependent pathway, at least in case of Iscador Quercus. Iscador Malus also seemed to induce apoptosis via the death receptor route, which may explain the higher sensitivity of cancer and endothelial cells to this preparatio

    Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities.

    No full text
    Item does not contain fulltextCervical intraepithelial neoplasia (CIN I, II, and III) and cases of CIN III associated with micro-invasive cervical carcinoma (CIN III & mCA) were analysed for evidence of episomal or integrated human papillomavirus (HPV) 16/18 DNA by fluorescence in situ hybridization (FISH). In parallel, numerical aberrations of chromosomes 1, 17, and X were determined in these lesions as indicators of genomic instability. HPV 16/18 DNA was present in 2 of 12 CIN I, 19 of 23 CIN II/III, and 10 of 12 CIN III & mCA. None of the CIN I and only two of the 19 HPV 16/18-positive solitary CIN II/III showed an integrated HPV pattern. However, all ten cases of HPV-positive CIN III & mCA showed this pattern. Transition of CIN II/III to CIN III & mCA therefore correlates strongly with viral integration (p<0.001). Chromosomal aberrations were detected in 23 of 31 HPV 16/18-positive lesions (14 solitary CIN I-III and nine CIN III & mCA) and 5 of 16 HPV-negative lesions. Nine of 21 HPV 16/18-positive solitary CIN I-III showed tetrasomy for all chromosomes tested, while trisomies for a single chromosome were seen in a further five of these HPV-positive lesions. In eight of ten HPV-positive CIN III & mCA, predominantly aneusomies and/or polysomies were detected. A significant correlation (p<0.02) was found between the chromosome copy number and the physical status of HPV, indicating that in its episomal form HPV induces genomic changes such as tetrasomies and single trisomies, while HPV integration correlates with aneusomies and polysomies, predominantly detected in CIN III & mCA. These data indicate that integration of HPV 16/18 DNA is a pivotal step in the transition of CIN to micro-invasive carcinoma
    corecore