10 research outputs found

    Next Steps for Access to Safe, Secure DNA Synthesis

    Get PDF
    The DNA synthesis industry has, since the invention of gene-length synthesis, worked proactively to ensure synthesis is carried out securely and safely. Informed by guidance from the U.S. government, several of these companies have collaborated over the last decade to produce a set of best practices for customer and sequence screening prior to manufacture. Taken together, these practices ensure that synthetic DNA is used to advance research that is designed and intended for public benefit. With increasing scale in the industry and expanding capability in the synthetic biology toolset, it is worth revisiting current practices to evaluate additional measures to ensure the continued safety and wide availability of DNA synthesis. Here we encourage specific steps, in part derived from successes in the cybersecurity community, that can ensure synthesis screening systems stay well ahead of emerging challenges, to continue to enable responsible research advances. Gene synthesis companies, science and technology funders, policymakers, and the scientific community as a whole have a shared duty to continue to minimize risk and maximize the safety and security of DNA synthesis to further power world-changing developments in advanced biological manufacturing, agriculture, drug development, healthcare, and energy

    Open-target sparse sensing of biological agents using DNA microarray

    Get PDF
    Background Current biosensors are designed to target and react to specific nucleic acid sequences or structural epitopes. These 'target-specific' platforms require creation of new physical capture reagents when new organisms are targeted. An 'open-target' approach to DNA microarray biosensing is proposed and substantiated using laboratory generated data. The microarray consisted of 12,900 25 bp oligonucleotide capture probes derived from a statistical model trained on randomly selected genomic segments of pathogenic prokaryotic organisms. Open-target detection of organisms was accomplished using a reference library of hybridization patterns for three test organisms whose DNA sequences were not included in the design of the microarray probes. Results A multivariate mathematical model based on the partial least squares regression (PLSR) was developed to detect the presence of three test organisms in mixed samples. When all 12,900 probes were used, the model correctly detected the signature of three test organisms in all mixed samples (mean(R2)) = 0.76, CI = 0.95), with a 6% false positive rate. A sampling algorithm was then developed to sparsely sample the probe space for a minimal number of probes required to capture the hybridization imprints of the test organisms. The PLSR detection model was capable of correctly identifying the presence of the three test organisms in all mixed samples using only 47 probes (mean(R2)) = 0.77, CI = 0.95) with nearly 100% specificity. Conclusions We conceived an 'open-target' approach to biosensing, and hypothesized that a relatively small, non-specifically designed, DNA microarray is capable of identifying the presence of multiple organisms in mixed samples. Coupled with a mathematical model applied to laboratory generated data, and sparse sampling of capture probes, the prototype microarray platform was able to capture the signature of each organism in all mixed samples with high sensitivity and specificity. It was demonstrated that this new approach to biosensing closely follows the principles of sparse sensing.Mitre Corporatio

    Progress and Prospects for a Nucleic Acid Screening Test Set

    Get PDF
    Objective: DNA synthesis companies screen orders to detect controlled sequences with misuse risks. Assessing screening accuracy is challenging owing to the breadth of biological risks and ambiguities in risk definitions. Here, we detail an International Gene Synthesis Consortium working group’s rationale and process to develop a prototype DNA synthesis screening test dataset, aiming to establish a baseline of screening system accuracy to compare with various screening approaches.Methodology: Construction of the prototype test dataset involved four tool developers screening nucleic acid sequences from three taxonomic clusters of controlled organisms (Orbivirus, Francisella tularensis, and Coccidioides). Results were mapped onto predefined, comparable categories, checking for consensus or conflicts. Conflicts were grouped based on gene annotation and resolved through discussion.Results: The process highlighted several long-standing challenges in DNA synthesis screening, including the qualitative differences in approaches taken by screening tools. Our findings highlight the lack of clarity in assessing pathogen sequences with respect to regulatory control language, compounded by scientific uncertainty. We illustrate the current degree of consensus and existing challenges using classification statistics and specific examples.Conclusions and Next Steps: This prototype underscores the necessity of expert-regulator coordination in assessing gene-associated risks, offering a template for creating test sets across all taxonomic groups on international control lists. Expanding the working group would enrich dataset comprehensiveness, enabling a transition from species-focused to function-focused regulatory controls. This sets the foundation for quality control, certification, and improved risk assessment in DNA synthesis screening

    Guiding Ethical Principles in Engineering Biology Research

    Get PDF
    Engineering biology is being applied toward solving or mitigating some of the greatest challenges facing society. As with many other rapidly advancing technologies, the development of these powerful tools must be considered in the context of ethical uses for personal, societal, and/or environmental advancement. Researchers have a responsibility to consider the diverse outcomes that may result from the knowledge and innovation they contribute to the field. Together, we developed a Statement of Ethics in Engineering Biology Research to guide researchers as they incorporate the consideration of long-term ethical implications of their work into every phase of the research lifecycle. Herein, we present and contextualize this Statement of Ethics and its six guiding principles. Our goal is to facilitate ongoing reflection and collaboration among technical researchers, social scientists, policy makers, and other stakeholders to support best outcomes in engineering biology innovation and development

    Sparse Sensing DNA Microarray-Based Biosensor: Is It Feasible?

    No full text
    Abstract—Conventional microarray-based biosensors can only detect a limited number of organisms, and adding sensor capabilities requires re-engineering of reagents and devices to detect the presence of a novel microbial organism. To overcome these limitations, the size of the microarray may need to be prohibitively large, an impractical proposition, cost-wise, using current technology. We hypothesized that a relatively small number of oligomers is sufficient to design a microarray capable of differentiating between the genomic signatures of multiple organisms. To test this hypothesis, we designed a sparse, pseudorandom prototype microarray-based biosensor by generating 12,600 25bp oligomer probes derived from a mathematical model based on random selection of DNA sequences from seven pathogenic prokaryotic genomes. To enable identification of novel organisms, a reference library of pure genomic DNA was generated from three simulant organisms that are known to be phylogenetically distant from the seven base species used to generate the probes. These simulants were combined to produce complex DNA samples meant to mimic the uncertainty and complexity of an unknown environmental genomic background. A mathematical model was then developed to capture the signature of each simulant organism. The model detected the presence of all three simulant organisms in the mixed DNA samples with high accuracy. Keywords-biosensor; sparse sensing; DNA microarray; VLMC; PLSR; genomic signature I

    Safety by design: Biosafety and biosecurity in the age of synthetic genomics

    No full text
    Summary: Technologies to profoundly engineer biology are becoming increasingly affordable, powerful, and accessible to a widening group of actors. While offering tremendous potential to fuel biological research and the bioeconomy, this development also increases the risk of inadvertent or deliberate creation and dissemination of pathogens. Effective regulatory and technological frameworks need to be developed and deployed to manage these emerging biosafety and biosecurity risks. Here, we review digital and biological approaches of a range of technology readiness levels suited to address these challenges. Digital sequence screening technologies already are used to control access to synthetic DNA of concern. We examine the current state of the art of sequence screening, challenges and future directions, and environmental surveillance for the presence of engineered organisms. As biosafety layer on the organism level, we discuss genetic biocontainment systems that can be used to created host organisms with an intrinsic barrier against unchecked environmental proliferation
    corecore