9 research outputs found

    Optimization Studies for Enhancing Cellulase Production by Penicillium janthinellum Mutant EU2D-21 Using Response Surface Methodology

    No full text
    Extracellular fungal cellulases are key enzymes for the degradation of lignocellulosic biomass. Greater production of these enzymes could reduce the cost of biofuels production. In this study, the basal medium for cellulase production by a Penicillium janthinellum mutant (EU2D-21) in submerged fermentation conditions was optimized using response surface methodology (RSM). Initial studies using a Plackett-Burman design (PBD) showed that (NH4)2SO4 and urea are significant factors for improving β-glucosidase and FPase production. A central composite design (CCD) was applied to obtain the maximum response, which resulted in the optimal production of β-glucosidase (5.79 IU/mL) and FPase (5.76 IU/mL). These values were 1.87 and 1.67 times higher than the corresponding values obtained under un-optimized conditions

    MOESM1 of Purification and characterization of an extracellular β-xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an unexplored yeast

    No full text
    Additional file 1. The mass spectrometric analysis of the purified β-xylosidase from Pseudozyma hubeiensis NCIM 3574

    Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation▿

    No full text
    Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale

    CELLULASES FROM PENICILLIUM JANTHINELLUM MUTANTS: SOLID-STATE PRODUCTION AND THEIR STABILITY IN IONIC LIQUIDS

    No full text
    The cellulase production by P. janthinellum mutants on lignocellulosic material such as cellulose or steam exploded bagasse (SEB) in combination with wheat bran was studied in solid state fermentation (SSF). One of the mutants, EU2D21, produced the highest levels of endoglucanase (3710 IU g-1 carbon source) and β-glucosidase (155 IU g-1 carbon source). Ionic liquids are so-called green solvents that have become attractive for biocatalysis. Stability of mutant cellulases was tested in 10-50% of the ionic liquid 1-butyl-3-methylimidazolium chloride ([bmim]Cl). FPA and CMCase were significantly stable in 10% ionic liquid after 5h. β-glucosidase showed 85% of its original activity after 5 h incubation in 30% ionic liquid and retained 55% of its activity after 24 h. This enzyme preparation hydrolyzed ionic-liquid-treated SEB completely in 15 h in the presence of 20% ionic liquid. These studies revealed that there is no need of regenerating cellulose after ionic liquid treatment, since cellulase of mutant strain was found to be significantly stable in the ionic liquid

    Early cellular events and potential regulators of cellulase induction in Penicillium janthinellum NCIM 1366

    No full text
    Abstract Cellulase production by fungi is tightly regulated in response to environmental cues, and understanding this mechanism is a key pre-requisite in the efforts to improve cellulase secretion. Based on UniProt descriptions of secreted Carbohydrate Active enZymes (CAZymes), 13 proteins of the cellulase hyper-producer Penicillium janthinellum NCIM 1366 (PJ-1366) were annotated as cellulases- 4 cellobiohydrolases (CBH), 7 endoglucanases (EG) and 2 beta glucosidases (BGL). Cellulase, xylanase, BGL and peroxidase activities were higher for cultures grown on a combination of cellulose and wheat bran, while EG was stimulated by disaccharides. Docking studies indicated that the most abundant BGL- Bgl2- has different binding sites for the substrate cellobiose and the product glucose, which helps to alleviate feedback inhibition, probably accounting for the low level of glucose tolerance exhibited. Out of the 758 transcription factors (TFs) differentially expressed on cellulose induction, 13 TFs were identified whose binding site frequencies on the promoter regions of the cellulases positively correlated with their abundance in the secretome. Further, correlation analysis of the transcriptional response of these regulators and TF-binding sites on their promoters indicated that cellulase expression is possibly preceded by up-regulation of 12 TFs and down-regulation of 16 TFs, which cumulatively regulate transcription, translation, nutrient metabolism and stress response
    corecore