23 research outputs found

    System and Method for Tensioning a Robotically Actuated Tendon

    Get PDF
    A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current

    Tool for Crimping Flexible Circuit Leads

    Get PDF
    A hand tool has been developed for crimping leads in flexible tails that are parts of some electronic circuits -- especially some sensor circuits. The tool is used to cut the tails to desired lengths and attach solder tabs to the leads. For tailoring small numbers of circuits for special applications, this hand tool is a less expensive alternative to a commercially available automated crimping tool. The crimping tool consists of an off-the-shelf hand crimping tool plus a specialized crimping insert designed specifically for the intended application

    Robonaut 2 Legs Simulation Data for Public Release

    Get PDF
    No abstract availabl

    Durable Tactile Glove for Human or Robot Hand

    Get PDF
    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models

    Fast Grasp Contact Computation for a Serial Robot

    Get PDF
    A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle

    Technology transfer and evaluation for Space Station telerobotics

    Get PDF
    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation

    HET2 Overview

    Get PDF
    2015 mid-year review charts of the Human Exploration Telerobotics 2 project that describe the Astrobee free-flying robot and the Robonaut 2 humanoid robot. A planned replacement for Synchronized Position Hold, Engage, Reorient, Experimental Satellite (SPHERES), which is currently in use in the International Space Station (ISS)

    Robot Arm with Tendon Connector Plate and Linear Actuator

    Get PDF
    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels

    Actuator and electronics packaging for extrinsic humanoid hand

    Get PDF
    The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support
    corecore