35 research outputs found

    Transverse propagation of action potentials between parallel chains of cardiac muscle and smooth muscle cells in PSpice simulations

    Get PDF
    BACKGROUND: We previously examined transverse propagation of action potentials between 2 and 3 parallel chain of cardiac muscle cells (CMC) simulated using the PSpice program. The present study was done to examine transverse propagation between 5 parallel chains in an expanded model of CMC and smooth muscle cells (SMC). METHODS: Excitation was transmitted from cell to cell along a strand of 5 cells not connected by low-resistance tunnels (gap-junction connexons). The entire surface membrane of each cell fired nearly simultaneously, and nearly all the propagation time was spent at the cell junctions, the junctional delay time being about 0.3 – 0.5 ms (CMC) or 0.8 – 1.6 ms (SMC). A negative cleft potential (V(jc)) develops in the narrow junctional clefts, whose magnitude depends on the radial cleft resistance (R(jc)), which depolarizes the postjunctional membrane (post-JM) to threshold. Propagation velocity (θ) increased with amplitude of V(jc). Therefore, one mechanism for the transfer of excitation from one cell to the next is by the electric field (EF) that is generated in the junctional cleft when the pre-JM fires. In the present study, 5 parallel stands of 5 cells each (5 × 5 model) were used. RESULTS: With electrical stimulation of the first cell of the first strand (cell A1), propagation rapidly spread down that chain and then jumped to the second strand (B chain), followed by jumping to the third, fourth, and fifth strands (C, D, E chains). The rapidity by which the parallel chains became activated depended on the longitudinal resistance of the narrow extracellular cleft between the parallel strands (R(ol2)); the higher the R(ol2 )resistance, the faster the θ. The transverse resistance of the cleft (R(or2)) had almost no effect. Increasing R(jc )decreases the total propagation time (TPT) over the 25-cell network. When the first cell of the third strand (cell C1) was stimulated, propagation spread down the C chain and jumped to the other two strands (B and D) nearly simultaneously. CONCLUSIONS: Transverse propagation of excitation occurred at multiple points along the chain as longitudinal propagation was occurring, causing the APs in the contiguous chains to become bunched up. Transverse propagation was more erratic and labile in SMC compared to CMC. Transverse transmission of excitation did not require low-resistance connections between the chains, but instead depended on the value of R(ol2). The tighter the packing of the chains facilitated transverse propagation

    Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells

    Get PDF
    We investigated the contribution of the intracellular calcium (Cai2+) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Cai2+ transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCE®). Our data show that the Cai2+ transient, like the hyperpolarization-activated “funny current” (If) and the ACh-sensitive potassium current (IK,ACh), is an important determinant of ACh-mediated pacemaker slowing. When If and IK,ACh were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 μM ACh was still able to reduce pacemaker frequency by 72%. In these If and IK,ACh-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Cai2+ transient decay (r2 = 0.98) and slow diastolic Cai2+ rise (r2 = 0.73). Inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (5 μM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Cai2+ transient and reduced the sarcoplasmic reticulum (SR) Ca2+ content, all in a concentration-dependent fashion. At 1 μM ACh, the spontaneous activity and Cai2+ transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 μM) and IK,ACh was inhibited by tertiapin (100 nM). Also, inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (25 μM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Cai2+ affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Cai2+ transient via a cAMP-dependent signaling pathway. Inhibition of the Cai2+ transient contributes to pacemaker slowing and inhibits Cai2+-stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Cai2+ transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells

    Hyperpolarization-Activated Current (Ih) in Ganglion-Cell Photoreceptors

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and serve as the primary retinal drivers of non-image-forming visual functions such as circadian photoentrainment, the pupillary light reflex, and suppression of melatonin production in the pineal. Past electrophysiological studies of these cells have focused on their intrinsic photosensitivity and synaptic inputs. Much less is known about their voltage-gated channels and how these might shape their output to non-image-forming visual centers. Here, we show that rat ipRGCs retrolabeled from the suprachiasmatic nucleus (SCN) express a hyperpolarization-activated inwardly-rectifying current (Ih). This current is blocked by the known Ih blockers ZD7288 and extracellular cesium. As in other systems, including other retinal ganglion cells, Ih in ipRGCs is characterized by slow kinetics and a slightly greater permeability for K+ than for Na+. Unlike in other systems, however, Ih in ipRGCs apparently does not actively contribute to resting membrane potential. We also explore non-specific effects of the common Ih blocker ZD7288 on rebound depolarization and evoked spiking and discuss possible functional roles of Ih in non-image-forming vision. This study is the first to characterize Ih in a well-defined population of retinal ganglion cells, namely SCN-projecting ipRGCs

    Membranes with the Same Ion Channel Populations but Different Excitabilities

    Get PDF
    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels

    Avaliação da pressão inspiratória em crianças com aumento do volume de tonsilas Evaluation of inspiratory pressure in children with enlarged tonsils and adenoids

    No full text
    Crianças com aumento do volume de tonsilas palatina e faríngea freqüentemente apresentam anormalidades respiratórias tais como ronco, respiração oral e apnéia do sono. Sabe-se que a obstrução de vias aéreas superiores e conseqüentemente a respiração oral podem resultar em problemas pulmonares. OBJETIVO: Avaliar a pressão inspiratória em crianças com obstrução de vias aéreas superiores devido ao aumento do volume de tonsilas. FORMA DE ESTUDO: clínico com coorte transversal. MATERIAL E MÉTODO: Nós avaliamos 37 crianças (4-13 anos, ambos os sexos) com aumento do volume de tonsilas que seriam submetidas à cirurgia de Adenoamigdalectomia na Divisão de Otorrinolaringologia da Universidade de São Paulo no mesmo período. O grupo controle foi composto de 28 crianças sem aumento de volume tonsilar que foram submetidas aos mesmos testes. A pressão Inspiratória foi obtida pelo uso do manovacuômetro. RESULTADOS: Observamos uma menor pressão inspiratória no grupo com aumento do volume de tonsilas. A média do grupo com aumento do volume das tonsilas foi 14,607 cm/H2O e do grupo normal foi de 27,580 cm/H2O (P< 0,001). CONCLUSÃO: O aumento de volume de tonsilas palatina e faríngea foi associado a uma menor pressão inspiratória, resultando em um aumento do esforço respiratório e do trabalho dos músculos envolvidos.<br>Children with enlarged tonsils and adenoids usually present breathing abnormalities such as snoring, mouth breathing and sleep apnea. It is known that upper airway obstruction and consequent mouth breathing may result in pulmonary diseases. AIM: The goal of this preliminary study was to evaluate the inspiratory pressure in children with upper airway obstruction due to enlarged tonsils. STUDY DESIGN: clinical with transversal cohort. MATERIAL AND METHOD: We evaluated 37 children (4 -13 years old, female/male) with enlarged tonsils who would be submitted to a T&A surgery in the Department of Otolaryngology, Medical School, University of Sao Paulo, from October 2002 to March 2003. The control group comprised 28 children without tonsillar disease submitted to the same tests. Inspiratory pressure was obtained using a manometer and vacuum meter. RESULTS: We could observe lower inspiratory pressures in children with upper airway obstruction. The mean of inspiratory pressure in the upper airway obstruction group was 14.607cm/H2O and in the control group was of 27.580cm/H2O. CONCLUSIONS: Enlarged tonsils and adenoids were associated with poor inspiratory pressure, resulting in increased breathing effort and work of the involved muscles
    corecore