22 research outputs found

    Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin

    Get PDF
    Small dense LDL (sdLDL) has been reported to be more atherogenic than large buoyant LDL (lbLDL). We examined the metabolism and protein composition of sdLDL and lbLDL in six subjects with combined hyperlipidemia on placebo and rosuvastatin 40 mg/day. ApoB-100 kinetics in triglyceride-rich lipoproteins (TRLs), lbLDL (density [d] = 1.019-1.044 g/ml), and sdLDL (d = 1.044-1.063 g/ml) were determined in the fed state by using stable isotope tracers, mass spectrometry, and compartmental modeling. Compared with placebo, rosuvastatin decreased LDL cholesterol and apoB-100 levels in TRL, lbLDL, and sdLDL by significantly increasing the fractional catabolic rate of apoB-100 (TRL, +45%; lbLDL, +131%; and sdLDL, +97%), without a change in production. On placebo, 25% of TRL apoB-100 was catabolized directly, 37% was converted to lbLDL, and 38% went directly to sdLDL; rosuvastatin did not alter these distributions. During both phases, sdLDL apoB-100 was catabolized more slowly than lbLDL apoB-100 (

    Extended-Release Niacin Alters the Metabolism of Plasma Apolipoprotein (Apo) A-I and ApoB-Containing Lipoproteins

    No full text
    Objectives— Extended-release niacin effectively lowers plasma TG levels and raises plasma high-density lipoprotein (HDL) cholesterol levels, but the mechanisms responsible for these effects are unclear. Methods and Results— We examined the effects of extended-release niacin (2 g/d) and extended-release niacin (2 g/d) plus lovastatin (40 mg/d), relative to placebo, on the kinetics of apolipoprotein (apo) A-I and apoA-II in HDL, apoB-100 in TG-rich lipoproteins (TRL), intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), and apoB-48 in TRL in 5 men with combined hyperlipidemia. Niacin significantly increased HDL cholesterol and apoA-I concentrations, associated with a significant increase in apoA-I production rate (PR) and no change in fractional catabolic rate (FCR). Plasma TRL apoB-100 levels were significantly lowered by niacin, accompanied by a trend toward an increase in FCR and no change in PR. Niacin treatment significantly increased TRL apoB-48 FCR but had no effect on apoB-48 PR. No effects of niacin on concentrations or kinetic parameters of IDL and LDL apoB-100 and HDL apoA-II were noted. The addition of lovastatin to niacin promoted a lowering in LDL apoB-100 attributable to increased LDL apoB-100 FCR. Conclusion— Niacin treatment was associated with significant increases in HDL apoA-I concentrations and production, as well as enhanced clearance of TRL apoB-100 and apoB-48

    Differential Effects of Estrogen and Progestin on Apolipoprotein B100 and B48 Kinetics in Postmenopausal Women

    No full text
    The distinct effects of the estrogen and progestin components of hormonal therapy on the metabolism of apolipoprotein (apo) B-containing lipoproteins have not been studied. We enrolled eight healthy postmenopausal women in a placebo-controlled, randomized, double-blind crossover study. Each subject received placebo, conjugated equine estrogen (CEE, 0.625 mg/day) and CEE plus medroxyprogesterone acetate (MPA, 2.5 mg/day) for 8 weeks in a randomized order, with a 4-week washout between phases.Main outcomes were the fractional catabolic rate (FCR) and production rate (PR) of apo B100 in triglyceride-rich lipoproteins (TRL), intermediate-density lipoproteins (IDL) and low -density lipoprotein (LDL) and of apo B48 in TRL. Compared to placebo, CEE increased TRL apo B100 PR (p = 0.04). CEE also increased LDL apo B100 FCR (p = 0.02), but this effect was offset by a significant increase in LDL apo B100 PR (p = 0.04). Adding MPA to CEE negated the CEE effects resulting in no significant changes in TRL apo B100 PR and LDL apo B100 FCR and PR relative to placebo. Relative to placebo, during CEE there was a trend toward a reduction in plasma apo B48 concentrations and PR (p = 0.07 and p = 0.12, respectively). Compared with CEE, CEE + MPA significantly increased TRL apo B48 FCR (p = 0.02) as well as apo B48 PR (p = 0.01), resulting in no significant changes in apo B48 concentration. Estrogen and progestin have independent and opposing effects on the metabolism of the atherogenic apo B100- and apo B48-containing lipoproteins

    Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a)

    No full text
    Objectives
 Lipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).
 
 Materials and Methods
 The kinetics of apo(a) and apoB-100 in plasma Lp(a) were assessed in four men with dyslipidemia [Lp(a) concentration: 8.9–124.7 nmol/L]. All subjects received a primed constant infusion of [5,5,5-2H3] L-leucine while in the constantly fed state. Lp(a) was immunoprecipitated directly from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic enrichment was determined by gas chromatography/mass spectrometry.
 
 Results
 Multicompartmental modeling analysis indicated that the median fractional catabolic rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day, respectively (P = 0.04). The median Lp(a) apo(a) production rate at 0.248 nmol/kg · day− 1 was significantly lower than that of Lp(a) apoB-100 at 0.514 nmol/kg · day− 1 (P = 0.03).
 
 Conclusion
 Our data indicate that apo(a) has a plasma residence time (11 days) that is more than twice as long as that of apoB-100 (4 days) within Lp(a), supporting the concept that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a unit in humans in the fed state

    Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a)

    No full text
    ObjectivesLipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).Materials and methodsThe kinetics of apo(a) and apoB-100 in plasma Lp(a) were assessed in four men with dyslipidemia [Lp(a) concentration: 8.9-124.7nmol/L]. All subjects received a primed constant infusion of [5,5,5-(2)H3] L-leucine while in the constantly fed state. Lp(a) was immunoprecipitated directly from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic enrichment was determined by gas chromatography/mass spectrometry.ResultsMulticompartmental modeling analysis indicated that the median fractional catabolic rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day, respectively (P=0.04). The median Lp(a) apo(a) production rate at 0.248nmol/kg·day(-1) was significantly lower than that of Lp(a) apoB-100 at 0.514nmol/kg·day(-1) (P=0.03).ConclusionOur data indicate that apo(a) has a plasma residence time (11days) that is more than twice as long as that of apoB-100 (4days) within Lp(a), supporting the concept that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a unit in humans in the fed state

    Rosuvastatin Enhances the Catabolism of LDL apoB-100 in Subjects with Combined Hyperlipidemia in a Dose Dependent Manner

    No full text
    Dose-associated effects of rosuvastatin on the metabolism of apolipoprotein (apo) B-100 in triacylglycerol rich lipoprotein (TRL, d P P P P
    corecore