419 research outputs found
Deterministic meeting of sniffing agents in the plane
Two mobile agents, starting at arbitrary, possibly different times from
arbitrary locations in the plane, have to meet. Agents are modeled as discs of
diameter 1, and meeting occurs when these discs touch. Agents have different
labels which are integers from the set of 0 to L-1. Each agent knows L and
knows its own label, but not the label of the other agent. Agents are equipped
with compasses and have synchronized clocks. They make a series of moves. Each
move specifies the direction and the duration of moving. This includes a null
move which consists in staying inert for some time, or forever. In a non-null
move agents travel at the same constant speed, normalized to 1. We assume that
agents have sensors enabling them to estimate the distance from the other agent
(defined as the distance between centers of discs), but not the direction
towards it. We consider two models of estimation. In both models an agent reads
its sensor at the moment of its appearance in the plane and then at the end of
each move. This reading (together with the previous ones) determines the
decision concerning the next move. In both models the reading of the sensor
tells the agent if the other agent is already present. Moreover, in the
monotone model, each agent can find out, for any two readings in moments t1 and
t2, whether the distance from the other agent at time t1 was smaller, equal or
larger than at time t2. In the weaker binary model, each agent can find out, at
any reading, whether it is at distance less than \r{ho} or at distance at least
\r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such
distance estimation mechanism can be implemented, e.g., using chemical sensors.
Each agent emits some chemical substance (scent), and the sensor of the other
agent detects it, i.e., sniffs. The intensity of the scent decreases with the
distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd
International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2016), LNCS 998
Robots with Lights: Overcoming Obstructed Visibility Without Colliding
Robots with lights is a model of autonomous mobile computational entities
operating in the plane in Look-Compute-Move cycles: each agent has an
externally visible light which can assume colors from a fixed set; the lights
are persistent (i.e., the color is not erased at the end of a cycle), but
otherwise the agents are oblivious. The investigation of computability in this
model, initially suggested by Peleg, is under way, and several results have
been recently established. In these investigations, however, an agent is
assumed to be capable to see through another agent. In this paper we start the
study of computing when visibility is obstructable, and investigate the most
basic problem for this setting, Complete Visibility: The agents must reach
within finite time a configuration where they can all see each other and
terminate. We do not make any assumption on a-priori knowledge of the number of
agents, on rigidity of movements nor on chirality. The local coordinate system
of an agent may change at each activation. Also, by definition of lights, an
agent can communicate and remember only a constant number of bits in each
cycle. In spite of these weak conditions, we prove that Complete Visibility is
always solvable, even in the asynchronous setting, without collisions and using
a small constant number of colors. The proof is constructive. We also show how
to extend our protocol for Complete Visibility so that, with the same number of
colors, the agents solve the (non-uniform) Circle Formation problem with
obstructed visibility
The locally covariant Dirac field
We describe the free Dirac field in a four dimensional spacetime as a locally
covariant quantum field theory in the sense of Brunetti, Fredenhagen and Verch,
using a representation independent construction. The freedom in the geometric
constructions involved can be encoded in terms of the cohomology of the
category of spin spacetimes. If we restrict ourselves to the observable algebra
the cohomological obstructions vanish and the theory is unique. We establish
some basic properties of the theory and discuss the class of Hadamard states,
filling some technical gaps in the literature. Finally we show that the
relative Cauchy evolution yields commutators with the stress-energy-momentum
tensor, as in the scalar field case.Comment: 36 pages; v2 minor changes, typos corrected, updated references and
acknowledgement
Potential Conservation Laws
We prove that potential conservation laws have characteristics depending only
on local variables if and only if they are induced by local conservation laws.
Therefore, characteristics of pure potential conservation laws have to
essentially depend on potential variables. This statement provides a
significant generalization of results of the recent paper by Bluman, Cheviakov
and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present
extensions to gauged potential systems, Abelian and general coverings and
general foliated systems of differential equations. An example illustrating
possible applications of proved statements is considered. A special version of
the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are
proposed as new tools for the investigation of potential conservation laws.Comment: 36 pages, extended versio
On Z-gradations of twisted loop Lie algebras of complex simple Lie algebras
We define the twisted loop Lie algebra of a finite dimensional Lie algebra
as the Fr\'echet space of all twisted periodic smooth mappings
from to . Here the Lie algebra operation is
continuous. We call such Lie algebras Fr\'echet Lie algebras. We introduce the
notion of an integrable -gradation of a Fr\'echet Lie algebra, and
find all inequivalent integrable -gradations with finite dimensional
grading subspaces of twisted loop Lie algebras of complex simple Lie algebras.Comment: 26 page
Post-Newtonian equation for the energy levels of a Dirac particle in a static metric
We study first the Hamiltonian operator H corresponding to the Fock-Weyl
extension of the Dirac equation to gravitation. When searching for stationary
solutions to this equation, in a static metric, we show that just one invariant
Hermitian product appears natural. In the case of a space-isotropic metric, H
is Hermitian for that product. Then we investigate the asymptotic
post-Newtonian approximation of the stationary Schroedinger equation associated
with H, for a slow particle in a weak-field static metric. We rewrite the
expanded equations as one equation for a two-component spinor field. This
equation contains just the non-relativistic Schroedinger equation in the
gravity potential, plus correction terms. Those "correction" terms are of the
same order in the small parameter as the "main" terms, but are numerically
negligible in the case of ultra-cold neutrons in the Earth's gravity.Comment: 12pt LaTeX, 17 pages. v2: version accepted for publication in
Phys.Rev.D: comments on scalar product changed, using a recent paper;
discussion of PN expansions simplified (no change of units any more);
numerical estimates for ultra-cold neutrons in the Earth's gravit
Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints
The Tikhonov regularization of linear ill-posed problems with an
penalty is considered. We recall results for linear convergence rates and
results on exact recovery of the support. Moreover, we derive conditions for
exact support recovery which are especially applicable in the case of ill-posed
problems, where other conditions, e.g. based on the so-called coherence or the
restricted isometry property are usually not applicable. The obtained results
also show that the regularized solutions do not only converge in the
-norm but also in the vector space (when considered as the
strict inductive limit of the spaces as tends to infinity).
Additionally, the relations between different conditions for exact support
recovery and linear convergence rates are investigated.
With an imaging example from digital holography the applicability of the
obtained results is illustrated, i.e. that one may check a priori if the
experimental setup guarantees exact recovery with Tikhonov regularization with
sparsity constraints
Byzantine Gathering in Networks
This paper investigates an open problem introduced in [14]. Two or more
mobile agents start from different nodes of a network and have to accomplish
the task of gathering which consists in getting all together at the same node
at the same time. An adversary chooses the initial nodes of the agents and
assigns a different positive integer (called label) to each of them. Initially,
each agent knows its label but does not know the labels of the other agents or
their positions relative to its own. Agents move in synchronous rounds and can
communicate with each other only when located at the same node. Up to f of the
agents are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change its
label in every round, in particular by forging the label of another agent or by
creating a completely new one.
What is the minimum number M of good agents that guarantees deterministic
gathering of all of them, with termination?
We provide exact answers to this open problem by considering the case when
the agents initially know the size of the network and the case when they do
not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2.
More precisely, for networks of known size, we design a deterministic algorithm
gathering all good agents in any network provided that the number of good
agents is at least f+1. For networks of unknown size, we also design a
deterministic algorithm ensuring the gathering of all good agents in any
network but provided that the number of good agents is at least f+2. Both of
our algorithms are optimal in terms of required number of good agents, as each
of them perfectly matches the respective lower bound on M shown in [14], which
is of f+1 when the size of the network is known and of f+2 when it is unknown
Probability density of determinants of random matrices
In this brief paper the probability density of a random real, complex and
quaternion determinant is rederived using singular values. The behaviour of
suitably rescaled random determinants is studied in the limit of infinite order
of the matrices
Block orthogonal polynomials: I. Definition and properties
Constrained orthogonal polynomials have been recently introduced in the study
of the Hohenberg-Kohn functional to provide basis functions satisfying particle
number conservation for an expansion of the particle density. More generally,
we define block orthogonal (BO) polynomials which are orthogonal, with respect
to a first Euclidean scalar product, to a given -dimensional subspace of polynomials associated with the constraints. In addition, they are
mutually orthogonal with respect to a second Euclidean scalar product. We
recast the determination of these polynomials into a general problem of finding
particular orthogonal bases in an Euclidean vector space endowed with distinct
scalar products. An explicit two step Gram-Schmidt orthogonalization (G-SO)
procedure to determine these bases is given. By definition, the standard block
orthogonal (SBO) polynomials are associated with a choice of equal
to the subspace of polynomials of degree less than . We investigate their
properties, emphasizing similarities to and differences from the standard
orthogonal polynomials. Applications to classical orthogonal polynomials will
be given in forthcoming papers.Comment: This is a reduced version of the initial manuscript, the number of
pages being reduced from 34 to 2
- …