19 research outputs found

    Effekt unterschiedlich substituierter sulfonierter Polyaniline auf den Elektronentransfer mit pyrrolochinolinchinonabhängiger Glukosehydrogenase

    Get PDF
    Sulfonierte Polyaniline erwiesen sich bereits als geeignete Polymere für den Aufbau von Biosensoren. Aus diesem Grund setzten wir unterschiedlich substituierte Polymerformen für die Untersuchungen der direkten Elektronenübertragung zum Redoxenzym PQQ-GDH (Pyrrolochinolinchinon-abhängige Glukosedehydrogenase) ein. Dafür wurden zuerst neue Copolymere synthetisiert. Als Basis für die Synthesen wurden 2-Methoxyanilin-5-Sulfonsäure (MAS), 3-Aminobenzensulfonsäure (ABS), 3-Aminobenzoesäure (AB) und Anilin (AN) ausgewählt und deren Verhältnisse variiert. Alle Copolymere wurden hinsichtlich der direkten Reaktion mit PQQ-GDH untersucht. Diese Wechselwirkung wurde zunächst in Lösung, anschließend auch auf Elektroden beobachtet. Die Ergebnisse zeigen, dass nur die aus MAS- und AN-Einheiten bestehenden Copolymere in der Lage sind, mit dem Enzym in Lösung direkt zu interagieren, was wahrscheinlich dem Emeraldin Salz (ES) Redoxzustand des Polymers zuzuschreiben ist. Immobilisiert man die Polymere und das Enzym auf Kohlenstoffnanoröhrenbasierten Elektroden, generiert man direkte Bioelektrokatalyse auch im Falle der aus ABS/AB- und MAS/AB-Einheiten bestehenden Copolymere, die sich nach der Synthese im Pernigranilin Base (PB) Redoxzustand befinden. Im Gegensatz zur Situation in Lösung kann auf Elektroden das Potential zusätzlich genutzt werden, um Elektronen vom Enzym auf das Polymer zu übertragen. Solche Polymerbasierten Enzymelektroden besitzen Anwendungspotential in der Sensorik, aber auch in Biobrennstoffzellen

    Elektrogesponnene Polymerfasern als neuartiges Material für die Bioelektrokatalyse des Enzyms Pyrrolochinolinchinon-abhängige Glucosedehydrogenase

    Get PDF
    Es wurde ein dreidimensionales Polymerfasernetzwerk aufgebaut, charakterisiert und anschließend daran das Enzym Pyrrolochinolinchinon-abhängige Glukosedehydrogenase (PQQ)GDH gebunden. Das Polymerfasernetzwerk wurde durch Elektrospinnen einer Mischung des Polymers Polyacrylnitril und verschiedener leitfähiger Polymere der Polyanilin-Familie auf Indium-Zinn-Oxid-Elektroden aufgebracht. Die so hergestellten Fasermatten erwiesen sich bei mikroskopischen Untersuchungen gleichförmig präpariert und die Faserdurchmesser bewegten sich im Bereich weniger hundert Nanometer. Das Redoxpaar Kaliumhexacyanoferrat (II/III) zeigte an diesen Polymer-Elektrodenstrukturen eine quasi-reversible Elektrochemie. Bei weitergehenden Untersuchungen an den enzymmodifizierten Fasern ((PQQ)GDH) konnten unter Substratzugabe (Glukose) bioelektrokatalytische Ströme nachgewiesen werden. Das Fasernetzwerk fungiert hier nicht nur als Immobilisierungsmatrix, sondern als auch als Teil des Signalwandlers.A three-dimensional polymeric electrode structure was developed, characterized and subsequently coupled with the enzyme pyrroloquinoline quinone-dependent Glucosedehydrogenase (PQQ)GDH. The polymeric fiber network is produced by means of electrospinning from mixtures of polyacrylonitrile (PAN) and three different sulfonated poylanilines on top of ITO electrodes. The mats are uniform in their overall appearance; average diameters of the fibers produced are in the range of a few hundred nanometers. These polymeric structures can be shown to allow electrochemical conversions as verified with the ferri-/ferrocyanide redox couple. In addition, application in bioelectrocatalysis can be demonstrated. For two of three selected blends of PAN with sulfonated polyanillines, a well-defined bioelectrochemical response is obtained upon covalent fixation of PQQ-GDH to the fiber network and subsequent addition of substrate glucose. The electrospun matrix does not only act here as an immobilization support, but at the same time as a transducing element

    Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture

    Get PDF
    Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials;no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells

    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts

    Get PDF
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given

    Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review

    Get PDF
    Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed

    Fluoropolymer Film Formation by Electron Activated Vacuum Deposition

    No full text
    Polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP) and polychlorotrifluoroethylene (PCTFE) were heated to their decomposition temperature in a high vacuum. The emitted fragments passed an electron cloud, condensed on a substrate and formed fluoropolymer film. Growth rate of PTFE and PHFP films increased up to a factor five in the presence of the electron cloud. Mass spectrometry revealed changes in the mass spectra of fragments generated by thermal decomposition only and formed under electron activation. The observed changes were different for each fluoropolymer. Infrared spectroscopy (IRS) showed that the structure of the films was close to the structure of the bulk polymers. Atomic force microscopy (AFM) has revealed different morphologies of PTFE, PHFP and PCTFE films, suggesting a Volmer–Weber growth mechanism for PTFE and PHFP but a Frank-van der Merwe one for PCTFE. All films were smooth at nanoscale and transparent from ultraviolet to near-infrared region. Additional radio frequency (RF) plasma ignited in the emitted fragments at a low pressure increased mechanical characteristics of the films without losing their optical transparency and smoothness

    Fluoropolymer Film Formation by Electron Activated Vacuum Deposition

    No full text
    Polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP) and polychlorotrifluoroethylene (PCTFE) were heated to their decomposition temperature in a high vacuum. The emitted fragments passed an electron cloud, condensed on a substrate and formed fluoropolymer film. Growth rate of PTFE and PHFP films increased up to a factor five in the presence of the electron cloud. Mass spectrometry revealed changes in the mass spectra of fragments generated by thermal decomposition only and formed under electron activation. The observed changes were different for each fluoropolymer. Infrared spectroscopy (IRS) showed that the structure of the films was close to the structure of the bulk polymers. Atomic force microscopy (AFM) has revealed different morphologies of PTFE, PHFP and PCTFE films, suggesting a Volmer–Weber growth mechanism for PTFE and PHFP but a Frank-van der Merwe one for PCTFE. All films were smooth at nanoscale and transparent from ultraviolet to near-infrared region. Additional radio frequency (RF) plasma ignited in the emitted fragments at a low pressure increased mechanical characteristics of the films without losing their optical transparency and smoothness

    Chip-integrierte photonische Bauelemente

    No full text
    In unserer hochtechnologisierten Gesellschaft spielt die optische Datenübertragung aufgrund der stetig wachsenden Informationsvielfalt eine immer bedeutendere Rolle. In den Anfängen der Nachrichtentechnik waren Datenraten von wenigen bit/s realisierbar. Heute werden mittels optischer Technologien Übertragungsraten von mehreren Gbit/s umgesetzt. Möglich wird dies durch neue Entwicklungen in der Chip-integrierten Photonik. Beispiele dafür sind Chip-integrierte elektrooptische Modulatoren und Schalter. In diesem Artikel werden neue Entwicklungen in der Chip-integrierten Photonik diskutiert und die experimentelle Charakterisierung der Bauelemente in Form eines Ringresonators beschrieben. Für die Experimente wird exemplarisch ein photonisches Bauelement genutzt, das aus einem hybriden Silizium-Polymer-Materialsystem besteht. Die Ergebnisse zeigen, dass diese Materialkombination vielversprechend für zukünftige Chip-integrierte photonische Bauelemente mit extrem geringem Energiebedarf ist.The focus on high-tech in our society makes optical data transmission increasingly important due to the continually growing diversity of information. At the very beginning of integrated photonics, the data rates achieved were only a few bit/s. Today, transfer rates of several Gbit/s are possible due to novel chip-integrated devices such as electro-optical modulators and switches. This trend was made possible due to new developments in the field of Chip-integrated photonics. In this article, we discuss latest developments in the field of chip-integrated photonic devices and describe their experimental characterization. The experimental setup is developed and described in detail. The example used in our experiments is a hybrid silicon-polymer material system. Our results show that the hybrid material approach is a promising candidate for future on-chip integrated photonic devices with low power consumption
    corecore