564 research outputs found

    Complementary Sensory and Associative Microcircuitry in Primary Olfactory Cortex

    Get PDF
    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC).Wecharacterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population CaÂČâș imaging. Layer II and III principal cells are set up on a superficial-to-deep vertical axis. We found that the position on this axis correlates with input resistance and bursting behavior. These parameters scale with distinct patterns of incorporation into sensory and associative microcircuits, resulting in a converse gradient of sensory and intracortical inputs. In layer II, sensory circuits dominate superficial cells, whereas incorporation in intracortical circuits increases with depth. Layer III pyramidal cells receive more intracortical inputs than layer II pyramidal cells, but with an asymmetric dorsal offset. This microcircuit organization results in a diverse hybrid feedforward/recurrent network of neurons integrating varying ratios of intracortical and sensory input depending on a cell’s position on the superficial-to-deep vertical axis. Since burstiness of spiking correlates with both the cell’s location on this axis and its incorporation in intracortical microcircuitry, the neuronal output mode may encode a given cell’s involvement in sensory versus associative processing

    Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    Get PDF
    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with SC- and RC-(RP,SP)-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by RC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octylphosphonate (RC-trioctyl) with an inactivation half-time of 75 min, while that for the SC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octyl-phosphonate (SC-trioctyl) compound was 530 min. X-ray structures were obtained of P. cepacia lipase after reaction with RC-trioctyl to 0.29-nm resolution at pH 4 and covalently modified with RC-(RP,SP)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butyl-phosphonate (RC-tributyl) to 0.175-nm resolution at pH 8.5. The three-dimensional structures reveal that both triacylglycerol analogues had reacted with the active-site Ser87, forming a covalent complex. The bound phosphorus atom shows the same chirality (SP) in both complexes despite the use of a racemic (RP,SP) mixture at the phosphorus atom of the triacylglycerol analogues. In the structure of RC-tributyl-complexed P. cepacia lipase, the diacylglycerol moiety has been lost due to an aging reaction, and only the butyl phosphonate remains visible in the electron density. In the RC-trioctyl complex the complete inhibitor is clearly defined; it adopts a bent tuning fork conformation. Unambiguously, four binding pockets for the triacylglycerol could be detected: an oxyanion hole and three pockets which accommodate the sn-1, sn-2, and sn-3 fatty acid chains. Van der Waals’ interactions are the main forces that keep the radyl groups of the triacylglycerol analogue in position and, in addition, a hydrogen bond to the carbonyl oxygen of the sn-2 chain contributes to fixing the position of the inhibitor.

    Integrated natural resource planning

    Get PDF
    Deciding upon management strategies and use of natural resources becomes more challenging as urban areas expand and human population and consumption levels continue to increase. Given that a larger urban population, interestingly, seems to demand both more resources (products) and greater environmental protection, there will no doubt be a coincident heightening of conflicts over natural resource management in the next century. Making decisions on natural resource allocation and use under such circumstances will become even more complex and difficult than they are today. Skilled people will be needed who can develop an integrated approach to natural resource management that sheds light on the tradeoffs and implications of their decisions. To help address this need, we developed a course in integrated natural resource management with funding received from the Cooperative State Research Service Higher Education Challenge Grants Program. This interdisciplinary course is team-taught and uses a combination of case studies and computerized models

    Chronology Protection in anti-de Sitter

    Full text link
    We consider 1/2 BPS excitations of AdS(5)xS(5) geometries in type IIB string theory that can be mapped into free fermion configurations according to the prescription of Lin, Lunin and Maldacena (LLM). It is shown that whenever the fermionic probability density exceeds one or is negative, closed timelike curves appear in the bulk. A violation of the Pauli exclusion principle in the phase space of the fermions is thus intimately related to causality violation in the dual geometries.Comment: 4 pages, 1 figure. v2: clarifications on the proof and comments on curvature singularity added. v3: final version to appear in Class. Quantum Gra

    Proposal for a standard problem for micromagnetic simulations including spin-transfer torque

    No full text
    The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is of fundamental interest for the applied physics community. To investigate the spin-transfer torque, powerful simulation tools are mandatory. We propose a micromagnetic standard problem includingthe spin-transfer torque that can be used for the validation and falsication of micromagnetic simulation tools. The work is based on the micromagnetic model extended by the spin-transfer torque in continuously varying magnetizations as proposed by Zhang and Li. The standard problem geometry is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a Landau pattern with a vortex in the center of the structure. A spin-polarized dc current density of 1012 A/m2 flows laterally through the cuboid and moves the vortex core to a new steady-state position. We show that the new vortex-core position is a sensitive measure for the correctness of micromagnetic simulatorsthat include the spin-transfer torque. The suitability of the proposed problem as a standard problem is tested by numerical results from four different finite-difference and finite-element-based simulation tools

    Contribution of Classic and Alternative Effector Pathways in Peanut-Induced Anaphylactic Responses

    Get PDF
    Food allergy affects approximately 5% of children and is the leading cause of hospitalization for anaphylactic reactions in westernized countries. However, the pathways of anaphylaxis in food allergy are still relatively unknown. We investigated the effector pathways of allergic and anaphylactic responses of different strains of mice in a clinical relevant model of peanut allergy. C3H/HeOuJ, C57BL/6 and BALB/c mice were sensitized by intragastric peanut extract and challenged by intragastric or intraperitoneal injection of peanut. Peanut-specific T cell responses, IgE, IgG1 and IgG2a and mucosal mast cell degranulation were induced to different extent in C3H/HeOuJ, C57BL/6 and BALB/c mice. Interestingly, anaphylactic symptoms after systemic challenge were highest in C3H/HeOuJ followed by C57BL/6 but were absent in BALB/c mice. Mechanistic studies showed that the food allergic systemic anaphylaxis was dependent on platelets, FcRÎł and mast cells, and partially dependent on platelet activating factor and monocytes/macrophages, depending on mouse strain. These data demonstrate that in three mouse strains, components of the classic and alternative anaphylactic cascade are differently expressed, leading to differential outcomes in parameters of allergic disease and food induced systemic anaphylaxis

    Oscillatory Size-Dependence of the Surface Plasmon Linewidth in Metallic Nanoparticles

    Full text link
    We study the linewidth of the surface plasmon resonance in the optical absorption spectrum of metallic nanoparticles, when the decay into electron-hole pairs is the dominant channel. Within a semiclassical approach, we find that the electron-hole density-density correlation oscillates as a function of the size of the particles, leading to oscillations of the linewidth. This result is confirmed numerically for alkali and noble metal particles. While the linewidth can increase strongly, the oscillations persist when the particles are embedded in a matrix.Comment: RevTeX4, 5 pages, 2 figures, final versio

    Transfer of quantum states using finite resources

    Get PDF
    We discuss the problem of transfering a qubit from Alice to Bob using a noisy quantum channel and only finite resources. As the basic protocol for the transfer we apply quantum teleportation. It turns out that for a certain quality of the channel direct teleportation combined with qubit purification is superior to entanglement purification of the channel. If, however, the quality of the channel is rather low one should simply apply an estimation-preparation scheme.Comment: 9 pages RevTeX including 5 figures, replaced with revised version, to appear in Phys. Rev.
    • 

    corecore