9 research outputs found

    Wavelet analysis of beam-soil structure response for fast moving train

    Get PDF
    This paper presents a wavelet based approach for the vibratory analysis of beam-soil structure related to a point load moving along a beam resting on the surface. The model is represented by the Euler-Bernoulli equation for the beam, elastodynamic equation of motion for the soil and appropriate boundary conditions. Two cases are analysed: the model with a half space under the beam and the model where the supporting medium has a finite thickness. Analytical solutions for the displacements are obtained and discussed in relation to the used boundary conditions and the type of considered loads: harmonic and constant. The analysis in time-frequency and velocity-frequency domains is carried out for realistic systems of parameters describing physical properties of the model. The approximate displacement values are determined by applying a wavelet method for a derivation of the inverse Fourier transform. A special form of the coiflet filter used in numerical calculations allows to carry out analysis without loss of accuracy related to singularities appearing in wavelet approximation formulas, when dealing with standard filters and complex dynamic systems. © 2009 IOP Publishing Ltd

    The Effect of Soil Non-linearity on Mixed Traffic Railway Lines: Passenger vs Freight Loads

    Get PDF
    To add additional capacity to railway networks, freight services might be added to lines that have previously only be used for passenger services. Existing ballasted lines may have mixed subgrade conditions and thus the effect of increased axle loads on track behavior is unclear. Typically, such cases will result in elevated track deflections in comparison to passenger vehicles. As a result, the supporting subgrade experiences higher strain levels, which can fall into the large strain range. The related non-linear subgrade behavior plays an important role in track response but is challenging to model. As a solution, this paper presents a new semi-analytical numerical model, where the track is simulated analytically and allows for 1D wave propagation. The ground is modelled using a non-linear equivalent thin-layer finite element formulation. This allows for the subgrade stiffness to be updated in an iterative manner with minimal computational effort. A case study is presented to show that modest increases in axle load can have a marked effect on track deflections

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand
    corecore