7 research outputs found

    Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    Get PDF
    [Image: see text] A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Na(v) channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis

    A novel drug binding site on voltage-gated sodium channels in rat brain

    No full text
    The effectiveness of several antiepileptic, analgesic, and neuroprotective drugs is attributable to state-dependent inhibition of voltage-gated sodium channels. To help characterize their site and mode of action on sodium channels, a member of the lamotrigine family, R-(�)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)- pyrimidine (BW202W92), was radiolabeled and used as a binding ligand in rat forebrain synaptosomes. Although the level of specific [3H]BW202W92 binding in a standard incubation medium was relatively poor, low concentrations of tetrodotoxin (EC50 � 2–3 nM) greatly enhanced the binding, apparently by increasing the affinity of the binding sites. Tetrodotoxin-dependent binding was stereoselective (the less active enantiomer, S-(�)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)- pyrimidine (BW203W92), was up to 30-fold less potent, depending on conditions) and was extremely sensitive to inhibition by raised K� concentration (IC50 � 5.9 mM), an effect that was ascribed to changes in membrane potential. In addition, the binding was inhibited by sodium channel neurotoxins acting on sites 3 and 4, but it was resistant to batrachotoxin (site 2) and brevetoxin (site 5). Several drugs acting on sodium channels displaced tetrodotoxin-dependent [3H]BW202W92 binding, and most of those tested showed different affinities under depolarized (100 mM K�) and polarized (1 mM K�) conditions. In a subset of compounds for which data were available, binding affinity in depolarized synaptosomes correlated well with apparent affinity for the inactivated state of sodium channels. The [3H]BW202W92 binding site is novel and is likely to represent a pharmacologically important site of action of drugs on voltage-gated sodium channels in the brain

    Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    No full text
    A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Na<sub>v</sub> channels. Metabolically stable analogue <b>6</b> was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis
    corecore