4,463 research outputs found

    Experimental Realization of 1→21 \to 2 Asymmetric Phase-Covariant Quantum Cloning

    Get PDF
    While exact cloning of an unknown quantum state is prohibited by the linearity of quantum mechanics, approximate cloning is possible and has been used, e.g., to derive limits on the security of quantum communication protocols. In the case of asymmetric cloning, the information from the input state is distributed asymmetrically between the different output states. Here, we consider asymmetric phase-covariant cloning, where the goal is to optimally transfer the phase information from a single input qubit to different output qubits. We construct an optimal quantum cloning machine for two qubits that does not require ancilla qubits and implement it on an NMR quantum information processor.Comment: 6 pages, 5 figure

    Quantum Electrodynamics near a Dielectric Half-space

    Get PDF
    We determine the photon propagator in the presence of a non-dispersive dielectric half-space and use it to calculate the self-energy of an electron near a dielectric surface

    Quantifying Changes in the Spatial Structure of Trabecular Bone

    Full text link
    We apply recently introduced measures of complexity for the structural quantfication of distal tibial bone. For the first time, we are able to investigate the temporal structural alteration of trabecular bone. Based on four patients, we show how bone may alter due to temporal immobilisation

    Formation of Polymorphic Cluster Phases for Purely Repulsive Soft Spheres

    Full text link
    We present results from density functional theory and computer simulations that unambiguously predict the occurrence of first-order freezing transitions for a large class of ultrasoft model systems into cluster crystals. The clusters consist of fully overlapping particles and arise without the existence of attractive forces. The number of particles participating in a cluster scales linearly with density, therefore the crystals feature density-independent lattice constants. Clustering is accompanied by polymorphic bcc-fcc transitions, with fcc being the stable phase at high densities.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Magnetic Field-Induced Lattice Effects in a Quasi-2D Organic Conductor Close to the Mott Metal-Insulator Transition

    Full text link
    We present ultra-high-resolution dilatometric studies in magnetic fields on a quasi-two-dimensional organic conductor κ\kappa-(D8-BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, which is located close to the Mott metal-insulator (MI) transition. The obtained thermal expansion coefficient, α(T)\alpha(T), reveals two remarkable features: (i) the Mott MI transition temperature TMIT_{MI} = (13.6 ±\pm 0.6)\,K is insensitive to fields up to 10\,T, the highest applied field; (ii) for fields along the interlayer \emph{b}-axis, a magnetic-field-induced (FI) phase transition at TFIT_{FI} = (9.5 ±\pm 0.5)\,K is observed above a threshold field Hc∼H_c \sim 1 T, indicative of a spin reorientation with strong magneto-elastic coupling.Comment: 5 pages, 4 figure

    Direct Measurement of 2D and 3D Interprecipitate Distance Distributions from Atom-Probe Tomographic Reconstructions

    Full text link
    Edge-to-edge interprecipitate distance distributions are critical for predicting precipitation strengthening of alloys and other physical phenomena. A method to calculate this 3D distance and the 2D interplanar distance from atom-probe tomographic data is presented. It is applied to nanometer-sized Cu-rich precipitates in an Fe-1.7 at.% Cu alloy. Experimental interprecipitate distance distributions are discussed

    From Type IIA Black Holes to T-dual Type IIB D-Instantons in N=2, D=4 Supergravity

    Get PDF
    We discuss the T-duality between the solutions of type IIA versus IIB superstrings compactified on Calabi-Yau threefolds. Within the context of the N=2, D=4 supergravity effective Lagrangian, the T-duality transformation is equivalently described by the c-map, which relates the special Kahler moduli space of the IIA N=2 vector multiplets to the quaternionic moduli space of the N=2 hyper multiplets on the type IIB side (and vice versa). Hence the T-duality, or c-map respectively, transforms the IIA black hole solutions, originating from even dimensional IIA branes, of the special Kahler effective action, into IIB D-instanton solutions of the IIB quaternionic sigma-model action, where the D-instantons can be obtained by compactifying odd IIB D-branes on the internal Calabi-Yau space. We construct via this mapping a broad class of D-instanton solutions in four dimensions which are determinded by a set of harmonic functions plus the underlying topological Calabi-Yau data.Comment: LaTeX, 37 pages. Some typos fixed. Final version, to appear in Nucl. Phys.
    • …
    corecore