4,244 research outputs found

    Levels of trace metals and effect of body size on metal content and concentration in Arctica islandica L. (Mollusca: Bivalvia) from Kiel Bay, Western Baltic

    Get PDF
    The levels of four trace metals (Cd, Cu, Pb, and Zn) in the whole soft body and in different organs of the ocean quahog Arctica islandica were evaluated from four stations in Kiel Bay, Western Baltic. The relationships between the contents and concentrations of these metals and body size (weight and length) were also investigated. Double logarithmic plots of metal contents and concentrations against dry body weight and shell length, respectively, show straight-line relationships. The results indicate that smaller individuals have higher concentrations of Cu and Zn, two essential metals, while larger individuals have higher concentrations of Cd and Pb, two non-essential metals. The calculated regression slopes of metal content against dry-body weight revealed that Cd and Cu appear to be affected by maturation since two different slopes are observed for both metals before and after maturation. This was not obvious for Pb and Zn. Pooled slopes of metal content against dry-body weight for all animal sizes indicated that Cu and Zn have a one common slope of (0.82) and Cd and Pb another common one of (1.51). Plots of metal concentrations against shell length indicated also that Cu and Zn have one common slope of (−0.54) and Cd and Pb another one of (1.56). Moreover, it was possible to calculate one final slope of (1.53) for Cd and Pb from both content/weight and concentration/length plots. This indicates that A. islandica may have one metabolic strategy for the essential metals and another for the non-essential metals

    Viscosity of an ideal relativistic quantum fluid: A perturbative study

    Full text link
    We show that a quantized ideal fluid will generally exhibit a small but non-zero viscosity due to the backreaction of quantum soundwaves on the background. We use an effective field theory expansion to estimate this viscosity to first order in perturbation theory. We discuss our results, and whether this estimate can be used to obtain a more model-independent estimate of the "quantum bound" on the viscosity of physical systemsComment: Accepted for publication, Phys.Rev.D. Discussion slightly clarified and extended, references added, error in calculation fixed. COnclusions unchange

    Phenomenological Modeling of Photoemission Spectra in Strongly Correlated Electron Systems

    Full text link
    A phenomenological approach is presented that allows one to model, and thereby interpret, photoemission spectra of strongly correlated electron systems. A simple analytical formula for the self-energy is proposed. This self-energy describes both coherent and incoherent parts of the spectrum (quasiparticle and Hubbard peaks, respectively). Free parameters in the expression are determined by fitting the density of states to experimental photoemission data. An explicit fitting is presented for the La1−x_{1-x}Srx_xTiO3_3 system with 0.08≀x≀0.380.08 \le x \le 0.38. In general, our phenomenological approach provides information on the effective mass, the Hubbard interaction, and the spectral weight distribution in different parts of the spectrum. Limitations of this approach are also discussed.Comment: 13 pages, 4 figures, IJMPB style (included

    The two-angle model and the phase diagram for Chromatin

    Full text link
    We have studied the phase diagram for chromatin within the framework of the two-angle model. Rather than improving existing models with finer details our main focus of the work is getting mathematically rigorous results on the structure, especially on the excluded volume effects and the effects on the energy due to the long-range forces and their screening. Thus we present a phase diagram for the allowed conformations and the Coulomb energies

    Speedup of quantum state transfer by three- qubit interactions: Implementation by nuclear magnetic resonance

    Full text link
    Universal quantum information processing requires single-qubit rotations and two-qubit interactions as minimal resources. A possible step beyond this minimal scheme is the use of three-qubit interactions. We consider such three-qubit interactions and show how they can reduce the time required for a quantum state transfer in an XY spin chain. For the experimental implementation, we use liquid-state nuclear magnetic resonance (NMR), where three-qubit interactions can be implemented by sequences of radio-frequency pulses.Comment: Comments are welcome to [email protected] or [email protected]. More experimental results are adde

    Anderson localization vs. Mott-Hubbard metal-insulator transition in disordered, interacting lattice fermion systems

    Full text link
    We review recent progress in our theoretical understanding of strongly correlated fermion systems in the presence of disorder. Results were obtained by the application of a powerful nonperturbative approach, the Dynamical Mean-Field Theory (DMFT), to interacting disordered lattice fermions. In particular, we demonstrate that DMFT combined with geometric averaging over disorder can capture Anderson localization and Mott insulating phases on the level of one-particle correlation functions. Results are presented for the ground-state phase diagram of the Anderson-Hubbard model at half filling, both in the paramagnetic phase and in the presence of antiferromagnetic order. We find a new antiferromagnetic metal which is stabilized by disorder. Possible realizations of these quantum phases with ultracold fermions in optical lattices are discussed.Comment: 25 pages, 5 figures, typos corrected, references update

    Factorizing Numbers with the Gauss Sum Technique: NMR Implementations

    Get PDF
    Several physics-based algorithms for factorizing large number were recently published. A notable recent one by Schleich et al. uses Gauss sums for distinguishing between factors and non-factors. We demonstrate two NMR techniques that evaluate Gauss sums and thus implement their algorithm. The first one is based on differential excitation of a single spin magnetization by a cascade of RF pulses. The second method is based on spatial averaging and selective refocusing of magnetization for Gauss sums corresponding to factors. All factors of 16637 and 52882363 are successfully obtained.Comment: 4 pages, 4 figures; Abstract and Conclusion are slightly modified. References added and formatted with Bibte

    Metalloporphyrins inactivate caspase-3 and -8

    Get PDF
    Activation of caspases represents one of the earliest biochemical indicators for apoptotic cell death. Therefore, measurement of caspase activity is a widely used and generally accepted method to determine apoptosis in a wide range of in vivo and in vitro settings. Numerous publications characterize the role of the heme-catabolizing enzyme heme oxygenase-1 (HO-1) in regulating apoptotic processes. Different metalloporphyrins representing inducers and inhibitors of this enzyme are often used, followed by assessment of apoptotic cell death. In the present work, we found that caspase-3-like activity, as well as activity of caspase-8 measured in either Fas (CD95) ligand-treated Jurkat T-lymphocytes or by the use of recombinant caspase-3 or -8, was inhibited by different metalloporphyrins (cobalt(III) protoporphyrin IX, tin and zinc II) protoporphyrin-IX). Moreover, employing the mouse model of Fas-induced liver apoptosis these properties of porphyrins could also be demonstrated in vivo. The metalloporphyrins were shown to inhibit caspase-3-mediated PARP cleavage. Molecular modeling studies demonstrated that porphyrins can occupy the active site of caspase-3 in an energetically favorable manner and in a binding mode similar to that of known inhibitors. The data shown here introduce metalloporphyrins as direct inhibitors of caspase activity. This finding points to the need for careful employment of metalloporphyrins as modulators of HO-1

    Quantification of complementarity in multi-qubit systems

    Full text link
    Complementarity was originally introduced as a qualitative concept for the discussion of properties of quantum mechanical objects that are classically incompatible. More recently, complementarity has become a \emph{quantitative} relation between classically incompatible properties, such as visibility of interference fringes and "which-way" information, but also between purely quantum mechanical properties, such as measures of entanglement. We discuss different complementarity relations for systems of 2-, 3-, or \textit{n} qubits. Using nuclear magnetic resonance techniques, we have experimentally verified some of these complementarity relations in a two-qubit system.Comment: 12 pages, 10 figures (A display error about the figures in the previous version
    • 

    corecore