4 research outputs found

    Novel Heterocyclic Analogues of Firefly Luciferin

    No full text
    Five novel firefly luciferin analogues in which the benzothiazole ring system of the natural substrate was replaced with benzimidazole, benzofuran, benzothiophene, benzoxazole, and indole were synthesized. The fluorescence, bioluminescence, and kinetic properties of the compounds were evaluated with recombinant <i>Photinus pyralis</i> wild type luciferase. With the exception of indole, all of the substrates containing heterocycle substitutions produced readily measurable flashes of light with luciferase. Compared to that of luciferin, the intensities ranged from 0.3 to 4.4% in reactions with varying pH optima and times to reach maximal intensity. The heteroatom changes influenced both the fluorescence and bioluminescence emission spectra, which displayed maxima of 479ā€“528 and 518ā€“574 nm, respectively. While there were some interesting trends in the spectroscopic and bioluminescence properties of this group of structurally similar substrate analogues, the most significant findings were associated with the benzothiophene-containing compound. This synthetic substrate produced slow decay glow kinetics that increased the total light-based specific activity of luciferase more than 4-fold versus the luciferin value. Moreover, over the pH range of 6.2ā€“9.4, the emission maximum is 523 nm, an unusual 37 nm blue shift compared to that of the natural substrate. The extraordinary bioluminescence properties of the benzothiophene luciferin should translate into greater sensitivity for analyte detection in a wide variety of luciferase-based applications

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells āˆ¼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity āˆ¼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 Ā°C or in culture medium for >15 h at 37 Ā°C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells āˆ¼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity āˆ¼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 Ā°C or in culture medium for >15 h at 37 Ā°C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells āˆ¼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity āˆ¼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 Ā°C or in culture medium for >15 h at 37 Ā°C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes
    corecore