2 research outputs found

    Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles

    No full text
    High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance−Fourier transform infrared spectroscopy (ATR−FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core–shell architectures

    pH and Potential Transients of the <i>bc</i><sub>1</sub> Complex Co-Reconstituted in Proteo-Lipobeads with the Reaction Center from Rb. sphaeroides

    No full text
    His-tag technology is employed to bind membrane proteins, such as the <i>bc</i><sub>1</sub> complex and the reaction center (RC) from Rhodobacter sphaeroides, to spherical as well as planar surfaces in a strict orientation. Subsequently, the spherical and planar surfaces are subjected to in situ dialysis to form proteo-lipobeads (PLBs) and protein-tethered bilayer membranes, respectively. PLBs based on Ni-nitrileotriacetic acid-functionalized agarose beads that have diameters ranging from 50 to 150 μm are used to assess proton release and membrane potential parameters by confocal laser-scanning microscopy. The pH and potential transients are thus obtained from <i>bc</i><sub>1</sub> activated by the RC. To assess the turnover of <i>bc</i><sub>1</sub> excited by the RC in a similar setting, we used the planar surface of an attenuated total reflection crystal modified with a thin gold layer to carry out time-resolved surface-enhanced IR absorption spectroscopy triggered by flash lamp excitation. The experiments suggest that both proteins interact in a cyclic manner in both environments. The activity of the proteins seems to be preserved in the same manner as that in chromatophores or reconstituted in liposomes
    corecore