43 research outputs found

    965-48 Ejection Fraction and Wall Thickness Correlate with Impaired Energy Metabolism in Patients with Dilated Cardiomyopathy

    Get PDF
    Using 31P-MR spectroscopy, abnormalities of cardiac energy metabolism have been demonstrated in patients with dilated cardiomyopathy (DCM). However. a detailed analysis of the correlations among energy metabolism, cardiac hemodynamics and myocardial hypertrophy obtained from 31P-MR, right and left heart catheterization and echocardiography has not been presented, 23 patients with DCM (left ventricular (LV) EF 34±3%; NYHA class 2.7±0.1; SE) underwent right and left heart catheterization and echocardiography±3 days before/after MR spectroscopy. Coronary artery disease was ruled out by coronary angiography. ECG-triggered. localized 31 P-MR spectra from the anteroseptal myocardium were acquired at rest (prone position) during 30min on a 1.5 T Philips Gyroscan MR system using ISIS localization, adiabatic pulses. and a 15 sec repetition time. Peak areas were corrected for T1 effects and for blood contamination. and were determined with Lorentzian line fits in the time domain. Linear correlations between creatine phosphate (CP)/ATP ratios and hemodynamic parameters were calculated.LV pressures and diameters. cardiac output, stroke volume, pulmonary arterial pressures, right atrial pressure and pulmonary arterial oxygen saturation did not correlate with CP/ATP. Thus, our data demonstrate that in DCM, the extent of high-energy phosphate depletion is related to the extent of mechanical dysfunction as well as to LV wall thickness

    Optimizing of preoperative computed tomography for diagnosis in patients with peritoneal carcinomatosis

    Get PDF
    <p>Abstract</p> <p>Background and Objective</p> <p>This study evaluates whether Computer Tomography is an effective procedure for preoperative staging of patients with Peritoneal Carcinomatosis.</p> <p>Method</p> <p>A sample of 37 patients was analyzed with contrast enhanced abdominal Computer Tomography, followed by surgical staging. All Computer Tomography scans were evaluated 3 times by 2 radiologists with one radiologist reviewing 2 times. The efficacy of Computer Tomography was evaluated using the Spearman correlation coefficient. Correlations were analyzed by abdominopelvic region to assess results of the Peritoneal Carcinomatosis Index (PCI) aggregating the 13 regions. Surgical findings were compared to radiological findings.</p> <p>Results</p> <p>Results indicate high correlations between the surgical and radiological Peritoneal Carcinomatosis Indices. Analyses of the intra-class correlation between the first and second reading of one radiologist suggest high intra-observer reliability. Correlations by abdominopelvic region show higher values in the upper and middle regions and relatively lower values in the lower regions and the small bowel (correlation coefficients range between 0.418 and 0.726, p < 0.010; sensitivities range between 50% and 96%; and specificities range between 62% and 100%).</p> <p>Conclusion</p> <p>Computer Tomography represents an effective procedure in the preoperative staging of patients with PC. However, results by abdominopelvic region show lower correlation, therefore suggest lower efficacy. These results are supported by analyses of sensitivity and accuracy by lesion size. This suggests that Computer Tomography is an effective procedure for pre-operative staging but less for determining a tumor's accurate extent.</p

    Extensive craniocervical bone pneumatization

    No full text
    We report a case of extensive abnormal craniocervical bone pneumatization accidentally found in a patient without any history of trauma or surgery. The patient had only mild unspecific thoracic pain and bilateral paresthesia that did not correlate with computed tomography findings

    Model-based Acceleration of Parameter mapping (MAP) for saturation prepared radially acquired data

    No full text
    A reconstruction technique called Model-based Acceleration of Parameter mapping (MAP) is presented allowing for quantification of longitudinal relaxation time and proton density from radial single-shot measurements after saturation recovery magnetization preparation. Using a mono-exponential model in image space, an iterative fitting algorithm is used to reconstruct one well resolved and consistent image for each of the projections acquired during the saturation recovery relaxation process. The functionality of the algorithm is examined in numerical simulations, phantom experiments, and in-vivo studies. MAP reconstructions of single-shot acquisitions feature the same image quality and resolution as fully sampled reference images in phantom and in-vivo studies. The longitudinal relaxation times obtained from the MAP reconstructions are in very good agreement with the reference values in numerical simulations as well as phantom and in-vivo measurements. Compared to available contrast manipulation techniques, no averaging of projections acquired at different time points of the relaxation process is required in MAP imaging. The proposed technique offers new ways of extracting quantitative information from single-shot measurements acquired after magnetization preparation. The reconstruction simultaneously yields images with high spatiotemporal resolution fully consistent with the acquired data as well as maps of the effective longitudinal relaxation parameter and the relative proton density. Magn Reson Med 70:1524-1534, 2013. © 2013 Wiley Periodicals, Inc. Copyrigh

    Whole-body MRI of multiple myeloma: comparison of different MRI sequences in assessment of different growth patterns

    No full text
    PURPOSE: To determine sensitivity, specificity and inter-observer variability of different whole-body MRI (WB-MRI) sequences in patients with multiple myeloma (MM). METHODS AND MATERIALS: WB-MRI using a 1.5T MRI scanner was performed in 23 consecutive patients (13 males, 10 females; mean age 63+/-12 years) with histologically proven MM. All patients were clinically classified according to infiltration (low-grade, n=7; intermediate-grade, n=7; high-grade, n=9) and to the staging system of Durie and Salmon PLUS (stage I, n=12; stage II, n=4; stage III, n=7). The control group consisted of 36 individuals without malignancy (25 males, 11 females; mean age 57+/-13 years). Two observers independently evaluated the following WB-MRI sequences: T1w-TSE (T1), T2w-TIRM (T2), and the combination of both sequences, including a contrast-enhanced T1w-TSE with fat-saturation (T1+/-CE/T2). They had to determine growth patterns (focal and/or diffuse) and the MRI sequence that provided the highest confidence level in depicting the MM lesions. Results were calculated on a per-patient basis. RESULTS: Visual detection of MM was as follows: T1, 65% (sensitivity)/85% (specificity); T2, 76%/81%; T1+/-CE/T2, 67%/88%. Inter-observer variability was as follows: T1, 0.3; T2, 0.55; T1+/-CE/T2, 0.55. Sensitivity improved depending on infiltration grade (T1: 1=60%; 2=36%; 3=83%; T2: 1=70%; 2=71%; 3=89%; T1+/-CE/T2: 1=50%; 2=50%; 3=89%) and clinical stage (T1: 1=58%; 2=63%; 3=79%; T2: 1=58%; 2=88%; 3=100%; T1+/-CE/T2: 1=50%; 2=63%; 3=100%). T2w-TIRM sequences achieved the best reliability in depicting the MM lesions (65% in the mean of both readers). CONCLUSIONS: T2w-TIRM sequences achieved the highest level of sensitivity and best reliability, and thus might be valuable for initial assessment of MM. For an exact staging and grading the examination protocol should encompass unenhanced and enhanced T1w-MRI sequences, in addition to T2w-TIRM

    Density weighted turbo spin echo imaging

    No full text
    Purpose To optimize the spatial response function (SRF) while maintaining optimal signal to noise ratio (SNR) in T weighted turbo spin echo (TSE) imaging by prospective density weighting. Materials and Methods Density weighting optimizes the SRF by sampling the k-space with variable density without the need of retrospective filtering, which would typically result in nonoptimal SNR. For TSE, the T decay needs to be considered when calculating an optimized sampling pattern. Simulations were carried out and T weighted in vivo TSE measurements were performed on a 3 Tesla MRI system. To evaluate the SNR, reversed centric density weighted and retrospectively filtered Cartesian acquisitions with identical measurement parameters and SRFs were compared with TE = 90 ms and a density weighted k-space sampling optimized to yield a Kaiser function for SRF side lobe suppression for white matter. Results Density weighting of a reversed centric reordering scheme resulted in an SNR increase of (43 ± 13)% compared with the Cartesian acquisition with retrospective filtering while maintaining comparable contrast behavior. Conclusion Density weighting is applicable to TSE imaging and results in significantly increased SNR. The gain can be used to shorten the measurement time, which suggests applying density weighting in both time and SNR constrained MRI
    corecore